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Optimization

Hisao Ishibuchi
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Many-objective Optimization

Single-Objective Optimization: Maximize f(X)

Multi-Objective Optimization:
Maximize f;(X), f,(X)
Maximize f,(X), f,(X), f3(X)

Many-Objective Optimization:

Maximize T1(X), T,(X), f5(X), f4(X)
Maximize f1(X), f,(X), f5(X), f4(X), fz(X)
Maximize fl(X), f2(X), f3(X), f4(X), fS(X)1 fG(X)



Number of Papers with “Many-Objective”
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Survey Paper on Evolutionary Many-Objective Optimization

IEEE CEC 2008 (Based on Invited Talk at IEEE CEC 2007)

Evolutionary many-objective optimization: A short review
Authors  Hisao Ishibuchi, Noritaka Tsukamoto, Yusuke Nojima

Publication date  2008/6/1

Conference 2008 |IEEE Congress on Evolutionary Computation

55 References (6 on EMO and 49 on many-objective)

Google Scholar
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My Main Research in the Last 5 Years

Search Behavior Analysis of Many-Objective Algorithms

H. Ishibuchi et al., Behavior of Multi-Objective Evolutionary
Algorithms on Many-Objective Knapsack Problems, IEEE
Trans. on Evolutionary Computation, 2015. 156 Citations

H. Ishibuchi et al., Performance of decomposition-based many-

objective algorithms strongly depends on Pareto front shapes,
IEEE Trans. on Evolutionary Computation, 2017. 120 Citations

Analysis of Many-Objective Test Problems

H. Ishibuchi et al., Pareto fronts of many-objective degenerate

test problems, IEEE Trans. on Evolutionary Computation, 2016.
38 Citations
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H. Ishibuchi et al., Behavior of Multi-Objective Evolutionary
Algorithms on Many-Objective Knapsack Problems, IEEE
Trans. on Evolutionary Computation, 2015. 156 Citations

D

Many-objective optimization is difficult: It is very difficult to
search for a wide variety of Pareto optimal solutions.




My Main Research in the Last 5 Years

Search Behavior Analysis of Many-Objective Algorithms

H. Ishibuchi et al., Performance of decomposition-based many-
objective algorithms strongly depends on Pareto front shapes,
|EEE Trans. on Evolutionary Computation, 2017. 120 Citations

Analysis of Many-Objective Test Problems

H. Ishibuchi et al., Pareto fronts of many-objective degenerate
test problems, IEEE Trans. on Evolutionary Computation, 2016.
38 Citations

D

Creation of many-objective test problems is difficult: We
need a wide variety of test problems with various features.



My Main Research in the Last 5 Years

Search Behavior Analysis of Many-Objective Algorithms

H. Ishibuchi et al., Behavior of Multi-Objective Evolutionary
Algorithms on Many-Objective Knapsack Problems, IEEE
Trans. on Evolutionary Computation, 2015. 156 Citations

H. Ishibuchi et al., Performance of decomposition-based many-

objective algorithms strongly depends on Pareto front shapes,
IEEE Trans. on Evolutionary Computation, 2017. 120 Citations

¥

Fare performance evaluation is difficult: It is very difficult to
evaluate EMO algorithms on many-objective problems.



My Current Research: Indicator

Analysis of Performance Indicators

H. Ishibuchi et al., How to Specify a Reference Point In

Hypervolume Calculation for Fair Performance Comparison,
Evolutionary Computation Journal, 2018.

H. Ishibuchi et al., Reference Point Specification in Inverted
Generational Distance for Triangular Linear Pareto Front,
IEEE Trans. on Evolutionary Computation, 2018.

H. Ishibuchi et al., Comparison of hypervolume, IGD and

IGD* from the viewpoint of optimal distributions of solutions,
EMO 20109.



My Current Research: Test Problems

Multi-Objective Test Problems
H. Ishibuchi et al., Regular Pareto Front Shape is not Realistic,
IEEE CEC 2019.

T. Matsumoto et al., A Multiobjective Test Suite with Hexagon
Pareto Fronts and Various Feasible Regions, IEEE CEC 2019.

Y. Nojima et al., Constrained Multiobjective Distance
Minimization Problems, GECCO 2019.

Multi-Modal Multi-Objective Test Problems

H. Ishibuchi et al., A Scalable Multimodal Multiobjective Test
Problem, IEEE CEC 20109.



My Current Research: Algorithms

Performance Comparison of EMO Algorithms

R. Tanabe & H. Ishibuchi, Non-elitist Evolutionary Multi-
objective Optimizers Revisited, GECCO 20109.

R. Tanabe & H. Ishibuchi, An Analysis of Control Parameters
of MOEA/D under Two Different Optimization Scenarios,
Applied Soft Computing 2018.

H. Ishibuchi et al., Two-layered Weight Vector Specification in
Decomposition-based Multi-objective Algorithms for Many-
objective Optimization Problems, CEC 2019.

Y. Liu et al., Searching for Local Pareto Optimal Solutions: A
Case Study on Polygon-based Problems, CEC 2019.



Today’s Plan

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems

3. Difficulties related to performance evaluation
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Many-Objective Optimization

Frequently Discussed Difficulties

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well.

2. Approximation of the Entire Pareto Front
A huge number of solutions are needed.

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult.

4. Selection of a Single Final Solution
Choice of a single final solution is difficult for DM.

5. Examination of Search Behavior
Visual observation of many-objective search is difficult.

6. Large Diversity of Solutions in a Population
Usefulness of crossover may be degraded.
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1. Search for Pareto Optimal Solutions

Pareto dominance does not work well

Q. Why are many-objective problems difficult for EMO ?

A. Solutions with many objectives are usually non-dominated
with each other. Thus no strong selection pressure towards
the Pareto front can be generated by Pareto dominance.
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2. Approximation of the Entire Pareto Front

A huge number of solutions are needed

Q: How many non-dominated solutions are needed to
approximate the entire Pareto-front of the k-objective
problem? (k=2, 3,4, ...
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2. Approximation of the Entire Pareto Front

A huge number of solutions are needed
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2. Approximation of the Entire Pareto Front

A huge number of solutions are needed
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3. Presentation of Obtained Solutions to DM

Visualization of high-dimensional solutions is difficult

DTLZ2

| ---- Pareto front d\ |
O QObtained solution g,

1000 ———Fm B0 20D
How can we show a number of four-dimensional
vectors to the decision maker?




3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult

Obtained Solutions for a Four-Objective Problem

We can see that a wide variety of solutions are
obtained. But, it is difficult to examine each solution.



4. Selection of a Single Final Solution

Choice of a single final solution is difficult for DM
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How can we choose a single final solution from a
large number of four-dimensional vectors?



4. Selection of a Single Final Solution
Choice of a single final solution is difficult for DM

0.0 E
f1 f2 f3 fa

Obtained Solutions for a Four-Objective Problem
It may be very difficult for the decision maker
to choose a single final solution from a large
number of obtained non-dominate solutions.



4. Selection of a Single Final Solution

Choice of a single final solution is difficult for DM

Presentation of only a small number of solutions may
help the decision maker. (Solution subset selection)
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4. Selection of a Single Final Solution

Choice of a single final solution is difficult for DM

Presentation of only a small number of solutions may
help the decision maker. How to select those solutions?
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Ten solutions selected from 220,298 non-dominated solutions.



Many-Objective Optimization

Frequently Discussed Difficulties

1. Search for Pareto Optimal Solutions
Pareto dominance does not work well.

2. Approximation of the Entire Pareto Front
A huge number of solutions are needed.

3. Presentation of Obtained Solutions to DM
Visualization of high-dimensional solutions is difficult.

4. Selection of a Single Final Solution
Choice of a single final solution is difficult for DM.

5. Examination of Search Behavior
Visual observation of many-objective search is difficult.

6. Large Diversity of Solutions in a Population
Usefulness of crossover may be degraded.

Ishibuchi et al., CEC 2008, IEEE TEVC 2015.



Difficulties of Many-Objective Problems

Three non-dominated solution? (Five-objective maximization)
fl 1 fl

f, fy f, f, f,

f3
(A) (B) (C)
Good for all objectives. Very good except for fg. Only fg is good.

These three solutions are non-dominated.
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Three non-dominated solution? (Five-objective maximization)
fl 1 fl

f, fy f, f, f,

f3
(A) (B) (C)
Good for all objectives. Very good except for fg. Only fg is good.

These three solutions are non-dominated.

=> We need additional information about the
decision maker’s preference.



Difficulties for Many-Objective Problems

Three non-dominated solution? (Five-objective maximization)
fl 1 fl

f, fy f, f, f,

f3
(A) (B) (C)
Good for all objectives. Very good except for fg. Only fg is good.
These three solutions are non-dominated.

By increasing the number of objectives, almost all
solutions become non-dominated.



Many-Objective Optimization

Many-objective optimization iIs difficult.

- It I1s very difficult to find a better solution
than the current one.



Better Solution: Two-Objective

Maximize f(x)=(f;(x), fo(X))

f2(x)
A
© Solutions in this region are better
E than solution A. (1/4 of the space)
E| —&@—
& A
=
> £, (X
Maximize 1(X)

Pareto dominance-based comparison



Better Solution: Four-Objective

Maximize T(Xx)=(f(x), f2(x), f3(x), f4(x))

fo (x)
A

o Solutions in this region are better
E than solution A. (1/16 of the space)
E| —&@—
& A
=
> £, (X
Maximize 1(X)

Pareto dominance-based comparison



Better Solution: M-Objective

Maximize f(x)=(f,(x), f,(X), ..., fyy (X))

fo (x)
A

o Solutions in this region are better
E than solution A. (1/2M of the space)
E| —&@—
& A
=
> £, (X
Maximize 1(X)

Pareto dominance-based comparison



Better Solution by Pareto Dominance

Pareto dominance-based comparison
Percentage of the better region

fo(x)
A

Maximize

IA

Maximize

> 11(x)

2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%
10 objectives| 1/1024 0.1%
15 objectives | 1/32768 | 0.003%
20 objectives | 1/1048576 | 0.0001%




Better Solution by Pareto Dominance

Pareto dominance-based comparison
Percentage of the better region

f2 (X)
A
N
=
= D A
=
Maximize

> 11(x)

2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%
10 objectives| 1/1024 0.1%
15 objectives | 1/32768 | 0.003%
20 objectives | 1/1048576 | 0.0001%

It Is very difficult to find a better solution.




Use of Scalarizing Function (MOEA/D)

Recently MOEA/D has been very popular.
A scalarizing function is used in MOEA/D.

I 1, I

Feasible
Region

Minimize f,(X)
Minimize f,(X)

0 Minimize f,(x) 0 Minimize f,(X)



Use of Scalarizing Function (MOEA/D)

Recently MOEA/D has been very popular.
A scalarizing function is used in MOEA/D.

1, l, Qingfu Zhang (MOEA/D)
O /4,
E Of(x).,~ s

~
X
~
Feasible o d Feasibile
N A on 1 O N A/ an
. X $F -‘.',____,—- £ .G

i 5 =3,
= '?'/
s

Minimize f,(X)




Use of Scalarizing Function

Weighted Tchebycheff
g (x4, 27) = max {A-|z" - fi(x) [}

1=1,2,....m
O Reference Point

L.

Maximize f,(x)

Contour lines of
the Tchebycheff function

Maximize fy(x)



Use of Scalarizing Function

Weighted Tchebycheff
g™ (x]4,27) :__rlnzax {Ai-lz7 = 1;,(x) [}
<> Reference Point o

Solutions in this region is
better than the current one.

Maximize f,(x)

Contour lines of
the Tchebycheff function

Maximize fy(x)



Use of Scalarizing Function

Weighted Tchebycheff

Percentage of the better region

fo(x)
A

Maximize

_'_

A

Maximize

> 11(x)

2 objectives 1/4 25%

3 objectives 1/8 13%

4 objectives 1/16 6%

5 objectives 1/32 3%
10 objectives| 1/1024 0.1%
15 objectives | 1/32768 | 0.003%
20 objectives | 1/1048576 | 0.0001%




Use of Scalarizing Function

Weighted Tchebycheff

Percentage of the better region
fi(x) 2 objectives 1/4 25%

3 objectives 1/8 13%
4 objectives 1/16 6%
C aoloicatiiica 1129 [oYa VA

Behavior of MOEA/D-Tch may be similar to Pareto |

domlnance based EMO algorithms (e.g., NSGA-II). H
> T, (X) [ 1o ODJECTIVES | 1732768 | U.UU370

20 objectives | 1/1048576 | 0.0001%

Maximize

Maximize




Use of Scalarizing Function

PBI Function (@=5)
g o (x|4, 2)=d; +6d,

Reference Point

<

Maximize f,(X)

~ _~ /, Contour lines of
~ ~ ~ 7/, the PBIfunction

__J:-. * One e
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Maximize f;(x)




Use of Scalarizing Function

PBI Function (@=5)
g > (x|4,2°)=d; +6d,
_. Reference Point

e"’""\; Solutions in this region is
better than the current one.

N

Maximize f,(X)

_~_~/, Contour lines of
_~_~ ~ 7, thePBIfunction

5, _‘. = .' = .
ra o _ﬂ} o=

MaX|m|ze fl(x)



Use of Scalarizing Function

PBI Function (6=15) very Rough Calculation
Percentage of the better region

fi(x) 2 objectives |  1/12 8%
3 objectives 1/36 3%
GE) 4 objectives 1/108 1%
E 5 objectives 1/324 0.3%
= 10 objectives | 1/78732 | 0.001%
Maximize > f1(x) [ 15 o:)J:ect?ves
20 objectives

Much smaller than the case of the Pareto dominance.



Use of Scalarizing Function

Weighted Sum

g (x[2) =4 fi(X)+ A - fo(X) + -+ + Ay - i (X)

Maximize f,(X)

Contour lines of

\ \ . the Weighted sum function

Maximize f,(x)




Use of Scalarizing Function

Weighted Sum
g (x| 2) =4 fi(X) + A - F2(X) + -+ + Ay - T (X)

Solutions in this region is
better than the current one.

Maximize f,(X)

Contour lines of
the Weighted sum function

-

“Maximize f,(x)



Use of Scalarizing Function

Weighted Sum

Percentage of the better region

fi(x) 2 objectives 1/2 50%
3 objectives 1/2 50%
GE) 4 objectives 1/2 50%
E A 5 objectives 1/2 50%
= 10 objectives 1/2 50%
— > f,(x) [ 15 objectives 1/2 50%

Maximize ——
20 objectives 1/2 50%




Use of Scalarizing Function

Weighted Sum

Percentage of the better region

fi(x) 2 objectives 1/2 50%
3 objectives 1/2 50%
GE) 4 objectives 1/2 50%
E A 5 objectives 1/2 50%
= 10 objectives 1/2 50%
— > f,(x) [ 15 objectives 1/2 50%

Maximize —
20 objectives 1/2 50%

Always a half of the objective space is better.



Expected Performance of EMO Algorithms

on Many-Objective Problems

Best Worst
A A A
A P
> > >
Weighted Sum Pareto Dominance PBI Function
(MOEA/D-WS) (NSGA-II) (MOEA/D-PBI)
Tchebycheff (@ =5)

(MOEA/D-Tch)




Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

Test Problems:
500-item knapsack problems with 2-10 objectives

Algorithms:
NSGA-II
MOEA/D with WS (Weighted Sum)
MOEA/D with Tchebycheff
MOEA/D with PBI (8= 5)

Performance Indicator:
Hypervolume

Expected difficulties are observed.



Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

Average Hyper-Volume Value
(Normalized by the Result of the MOEA/D-WS)

EMO Algorithm 2-0ODbj | 4-ODbj | 6-Obj | 8-Obj [10-Obj
MOEA/D: WS 100.0 | 100.0 | 100.0 | 100.0 | 100.0
MOEA/D: Tchebycheff| 100.7 | 99.7 | 94.0 | 90.1 | 87.7
NSGA-II 965 | 86.2 | 77.8 | 72.0 | 655
MOEA/D: PBI (5) |100.9| 89.3 | 73.8 | 67.4 | 61.9




Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

For 2-objective problems, MOEA/D-PBI Is the best.
No large differences among the four algorithms

EMO Algorithm

2-Obj | 4-Obj | 6-Obj | 8-Obj |10-Obj
MOEA/D: WS 100.0 | 100.0 | 100.0 | 100.0 | 100.0
MOEA/D: Tchebycheff| 100.7 | 99.7 | 94.0 | 90.1 | 87.7
NSGA-I| 96.5 | 86.2 | 77.8 | 72.0 | 655
MOEA/D: PBI (5) | 100.9 | 89.3 | 73.8 | 67.4 | 61.9




Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

For 2-objective problems, MOEA/D-PBI is the best.
No large differences among the four algorithms

EMO Algorithm

2-Obj | 4-Obj | 6-Obj | 8-Obj |10-Obj

MOEA/D: WS 100.0 | 100.0 | 100.0 | 100.0 | 100.0

MOEA/D: Tchebycheff| 100.7 | 99.7 | 94.0 | 90.1 | 87.7
NSGA-II 96.5 | 86.2 | 77.8
MOEA/D: PBI (5) |100.9 | 89.3 | 73.8

Y




Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

—or 6-10 objectives, MOEA/D-PBI is the worst.
_arge differences among the algorithms.
EMO Algorithm 2-0ODbj | 4-Obj | 6-Obj | 8-Obj [10-Obj
MOEA/D: WS 100.0 | 100.0 | 100.0 | 100.0 | 100.0
MOEA/D: Tchebycheff| 100.7 | 99.7 | 94.0 | 90.1 | 87.7
NSGA-II 96.5 | 86.2 | 77.8 | 720 | 65.5
MOEA/D: PBI (5) | 1009 | 89.3 | 73.8 | 67.4 | 61.9




Our Results on Knapsack Problems

Ishibuchi et al. IEEE TECV (2015)

~or 6-10 objectives, MOEA/D-PBI Is the worst.
_arge differences among the algorithms.

EMO Algorithm 6-Obj | 8-Obj [10-Obj
MOEA/D: WS 100.0 | 100.0 | 100.0
MOEA/D: Tchebycheft _ | 940 | 90.1 | 87.7
NSGA-II 965 | 86.2 | 77.8 | 72.0 | 655
MOEA/D: PBI (5) | 1009 | 89.3 | 738 | 6/4 | 61.9
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For 6-10 objectives, MOEA/D-Tchebycheff and
NSGA-II did not work well.
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For 6-10 objectives, MOEA/D-Tchebycheff and
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Our Results on Knapsack Problems
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For 6-10 objectives, MOEA/D-WS is the best.
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MOEA/D: PBI (5) |100.9| 89.3 | 73.8 | 67.4 | 61.9
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For 6-10 objectives, MOEA/D-WS is the best.
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Expected Performance of EMO Algorithms

on Many-Objective Problems

Best Worst
A A A
A Pa
> > >
Weighted Sum Tchebycheff PBI Function
(MOEA/D-WS) (MOEA/D-Tch) (MOEA/D-PBI)

(6 =5)




Multi-Objective Knapsack Problems
WS works well for the convex Pareto front

| i I N | N
16000 18000 20000 £,



Expected Performance of EMO Algorithms
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Our Results on DTLZ Test Problems

Ishibuchi et al. IEEE TECV (2017)

Test Problems:
DTLZ1 - DTLZ4 Problems with 5-10 objectives

Algorithms:
NSGA-II
MOEA/D with WS (Weighted Sum)
MOEA/D with Tchebycheff
MOEA/D with PBI (8= 5)
NSGA-III
MOEA/DD

Performance Indicator:
Hypervolume

Totally different results are obtained.



Our Results on DTLZ Test Problems

Ishibuchi et al. IEEE TECV (2017)

Average Hyper-Volume Value

Problem M NSGA-III MOEA/DD  PBI Tch WS NSGA-II
S 1.57677 1.57794 1.57768  1.51186  0.50052  0.00000
DTLZ1 8 213770 213730 213620  2.05463  0.96246  0.00000
10 2.59280  2.59260  2.59220  2.51973 1.07913  0.00000
S 1.30317 1.30778 1.30728  1.14598  0.61944  0.67442
DTLZ2 8 1.96916 1.97862 197817 1.35469  0.68315  0.00004
10 2.50878  2.51509  2.51500 1.69045  0.83883  0.00000
S 1.29894 1.30638 1.30398  1.14475  0.60143  0.00000
DTLZ3 8 1.95007 1.97162 1.74240  1.33166  0.66684  0.00000
10  2.50727 251445  2.50933 1.69956  0.80348  0.00000
S 1.30839 1.30876 1.20680  1.00426  0.42941 1.00881
DTLZ4 8 1.98025 1.98083 1.86439  1.35100  0.71296  0.00000
10 2.51524 251532 243536  1.56890  0.95488  0.00000




Tchebycheff Is better than WS

Average Hyper-Volume Value
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PBIl is better than Tchebycheff

Average Hyper-Volume Value
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10  2.50727 251445  2.50933 1.69956  0.80348  0.00000
S 1.30839 1.30876 1.20680 1.00426  0.42941 1.00881
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Results on DTLZ Test Problems

Totally different from the expected results
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A A A
A Pa
> > >
Weighted Sum Tchebycheff PBI Function
(MOEA/D-WS) (MOEA/D-Tch) (MOEA/D-PBI)

(6=5)



Results on DTLZ Test Problems

Totally different from the expected results

A

Weighted Sum
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>
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PBI Function
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Results on DTLZ Test Problems

Totally different from the expected results

) Worst Why ,?

A

>

Weighted Sum
(MOEA/D-WS)



DTLZ problems have concave Pareto fronts

==> Weighted sum cannot handle concave Pareto fronts

DTLZ2 (Minimization Problem)

Obtained solutions
by MOEA/D-WS

Pareto front and Initial Solutions



Results on DTLZ Test Problems

Totally different from the expected results
Worst Why ?

==> Because of the concave
shape of the Pareto fronts !

> Obtained solutions

Weighted Sum by MOEA/D-WS

(MOEA/D-WS) T




Results on DTLZ Test Problems

Totally different from the expected results

Why ,? ) Best
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>

(MOEA/D-Tch)

>

PBI Function
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(6=5)




Reason

DTLZ test problems are very easy
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Reason
It IS easy to find better solution.
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DTLZ test problems are very easy
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Reason

DTLZ test problems are very easy
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The best results were obtained from

the PBI function

Percentage of the better region
IS very small.

5 objectives 1/324 0.3%
10 objectives| 1/78732 | 0.001%

f,(x) No problem! . .
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Today’s Plan

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems

3. Difficulties related to performance evaluation



Typical Scenario of

Many-Objective Optimization Papers

Motivation:
- Many-objective optimization problems are difficult.
- New algorithms are needed.

Proposal:
- We propose a new high-performance algorithm.

Computational Experiments:
- Better results are obtained by the proposed algorithm than
the existing ones on DTLZ 1-4 and WFG 1-9 problems.



Test Problems

In Recent Many-Objective Papers

Publication Proposed Test Number of
Year Algorithm Problems Objectives
DTLZ 1-4 3,5,8, 10,15
2014 NSGA-I1II WFG 6-7 3,5, 8,10, 15
S-DTLZ 1-2 3,5,8,10, 15
DTLZ 1-4 3,5,8,10, 15
2015 I-DBEA DTLZ5(1, M) 3,5,8,10,15
WFG 1-9 , 5,10, 15
DTLZ 1-4 3,5,8,10, 15
2015 MOEA/DD WEG 1-9 35,8 10
DTLZ 1-4,7 2,5,8,10,13
2006 MOEADDY WG 19 2.5.8, 10, 13
S-DTLZ 1-2 2,5, 8,10, 13
DTLZ 1-4,7 3,5,8,10, 15
2016 ¢-DEA WFG 1-9 3,5,8,10, 15
S-DTLZ 1-2 3,5, 8, 10, 15



High-Performance Evolutionary

Many-Objective Algorithms

2007 MOEA/D
2014 NSGA-III
2015 |-DBEA
2015 MOEA/DD
2016 6- DEA

N

Better Results on
DTLZ and WFG

(New algorithms are
better than old ones).



Typical Scenario of

Many-Objective Optimization Papers

Motivation:

- Many-objective optimization problems are difficult.
- New algorithms are needed.

Proposal:
- We propose a new high-performance algorithm.

Computational Experiments:

- Better results are obtained by the proposed algorithm than
the existing ones on DTLZ 1-4 and WFG 1-9 problems.

@

Test problems are easy and have special features.




Special Feature: Better new solutions can

be easily created by genetic operators
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Special Feature: DTLZ 1-4 and WFG 4-9
have triangular Pareto fronts




MOEA/D and Test Problems

MOEA/D looks perfect for DTLZ

1.0

w; 0.5

Weight Vectors Pareto front
(DTLZ 1)



MOEA/D and Test Problems

MOEA/D looks perfect for DTLZ

w; 0.5

Weight Vectors

f, 1010 f

Pareto front
(DTLZ 2)



Shape of the Pareto front

for MOEA/D:

The point is whether the shape of the Pareto front is
similar to the shape of the weight vector distribution.

1.0

w; 0.5 7

| Pareto front
Weight Vectors (DTLZ 1)



Shape of the Pareto front

for MOEA/D:

The point is whether the shape of the Pareto front is
similar to the shape of the weight vector distribution.

A f3
2o, o _
1.0 | similar 1 gl .
w; 0.5 | o e Tle
0.0 0.0[ 2322 ¢ ¢ e s s e
0.0 0. 0.0

f, 10~10 f,

| Pareto front
Weight Vectors (DTLZ 2)



Shape of the Pareto front

for MOEA/D:

The point is whether the shape of the Pareto front is
similar to the shape of the weight vector distribution.
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Shape of the Pareto front

for MOEA/D:

The point is whether the shape of the Pareto front is
similar to the shape of the weight vector distribution.
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Experimental Results on (-1)x DTLZ1

MOEA/D-PBI




Experimental Results on (-1)x DTLZ1

/ f MOEA/D-PBI
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Pareto front




Experimental Results on (-1)x DTLZ1

NSGA-III




Experimental Results on (-1)x DTLZ1

NSGA-III

Pareto front




Our Results on Minus-DTLZ Test Problems

Ishibuchi et al. IEEE TECV (2017)

Average Hyper-Volume Value

Problem M NSGA-III MOEA/DD PBI Tch WS NSGA-II
Minus S 0.01265 0.00972 0.01739 0.01208 0.00083 0.01520
DTLZ 1 8 5.227E-05 0.881E-05 0.598E-05 3.215E-05 0.139E-05 3.568E-05

10 1.185E-06 0.100E-06 0.079E-06 0.620E-06 0.025E-06 0.765E-06
Minus 3 0.13957 0.08794 0.15984 0.15556 0.14930 0.17147
DTLZ 2 8 4.454E-03 2.690E-03 35.978E-03 0.459E-03 1.560E-03 4.585E-03
10 6.308E-04 1.836E-04 5.199E-04 0.052E-04 0.640E-04 3.797E-04
Minus 3 0.12951 0.08190 0.15902 0.15199 0.14891 0.16472
DTLZ 3 8 0.00414 0.002355 0.00596 0.00050 0.00156 0.00390
10 0.00054 0.00018 0.00052 0.00001 0.00006 0.00033
Minus 3 0.12326 0.07242 0.12296 0.14878 0.14881 0.16970
DTLZ 3 8 4.582E-03 2.198E-03 2.020E-03 0.485E-03 1.563E-03 3.886E-03
10 6.065E-04 2.569E-04 2.333E-04 0.043E-04 0.642E-04 3.006E-04




Experimental Results
(Hypervolume)

DTLZ and WFG (-1) x DTLZ and (-1) x WFG
MOEA/D (1997) [ Better MOEA/D (1997)
NSGA-III (2014) i NSGA-III (2014)
MOEA/DD (2015) 4 MOEA/DD (2015)
0-DEA (2016) Better _ 6 -DEA (2016)




Experimental Results
(Hypervolume)

DTLZ and WFG (-1) x DTLZ and (-1) x WFG
MOEA/D (1997) [ Better MOEA/D (1997)
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Adaptation of weight vectors Is an

iImportant research topic in MOEA/D.

MOEA/D-PBI




Adaptation of weight vectors Is an

iImportant research topic in MOEA/D.

NSGA-III




Adaptation of reference vectors is an

Important research topic in MOEA/D.

Big Question:

What is a good distribution of 200 reference vectors in a
10-dimensional objective space? We need 10 million
solutions to cover the entire Pareto front.

k-Objective Problem 5K -1)
2-ODbjective Problem 5
3-Objective Problem 25
10-Objective Problem 10 million




Today’s Plan

Difficulties in Evolutionary Many-Objective
Optimization Studies

1. Difficulties related to many-objective search
2. Difficulties related to test problems

3. Difficulties related to performance evaluation



Single-objective Optimization

Single-Objective Optimization: Maximize f(X)

£(X)
1

[




Single-objective Optimization

Single-Objective Optimization: Maximize f(X)

Optimal solution
f(x)
N / ___________________________________________________________




Single-objective Optimization

The final result of optimization is a single solution.
Comparison of solutions is easy.

£(X)
1

[




Single-objective Optimization

The final result of optimization is a single solution.
Comparison of solutions is easy.

£(X)
1

“@ IS better than @ ”
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Two-objective Optimization

Two-Objective Optimization Problem:
Maximize fl(X), fz(X)

>

Maximize

—h
N
>~
X
N>

Pareto-Optimal
Solutions

Maximiz
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e




Two-objective Optimization

The final result of optimization is a solution set.

— 1 T 1 r T
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Two-objective Optimization

The final result of optimization is a solution set.
Comparison of solution sets is not easy.

Which iIs a better solution set?

>
>

Maximize f,
Maximize f,

Maximize f, Maximize f,



Three-objective Optimization

Three-Objective Optimization Problem:
Maximize fl(X)’ fz(X), f3(X)

3
3
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Three-objective Optimization

The final result of optimization Is a solution set:
A set of solutions on the tradeoff surface.
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Three-objective Optimization

The final result of optimization Is a solution set.
Comparison of solution sets is difficult:

Which is a better solution set?




Three-objective Optimization

The final result of optimization Is a solution set.
Comparison of solution sets is difficult:

Which is a better solution set?




Three-objective Optimization

The final result of optimization Is a solution set.
Comparison of solution sets is difficult:

Which is a better solution set?
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Many-objective Optimization

Single-Objective Optimization: Maximize f(X)

Multi-Objective Optimization:
Maximize f;(X), f,(X)
Maximize f,(X), f,(X), f3(X)

Many-Objective Optimization:

Maximize T1(X), T,(X), f5(X), f4(X)
Maximize f1(X), f,(X), f5(X), f4(X), fz(X)
Maximize fl(X), f2(X), f3(X), f4(X), fS(X)1 fG(X)



Four-objective Optimization

Maximize f,(X), f5(X), f5(x), f,(X)

The final result of optimization is a solution set.
Examination of a solution set is not easy.

Obyjective Value

Objective No.



Four-objective Optimization

Which is the better solution set?
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Four-objective Optimization

Which is the better solution set?
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Three-objective Optimization

The final result of optimization Is a solution set.
Comparison of solution sets is difficult:

Which is a better solution set?




Four-objective Optimization

Which is the better solution set?
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Ten-objective Optimization

Maximize f;(X), f,(X), ..., f;5(X)

The final result of optimization is a solution set.
Examination of a solution set is not easy.
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Ten-objective Optimization

Maximize f;(X), f,(X), ..., f;5(X)

The final result of optimization is a solution set.
Comparison of solution sets is very difficult.
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Performance Indicators

Frequently-Used Performance Indicators
1. Hypervolume Indicator

2. 1GD (Inverted Generational Distance) Indicator

Property of These Indicators:
By increasing the number of solutions, the evaluation
of a solution set by these indicators can be improved.



Hypervolume

Hypervolume (HV) is the volume of the dominated
region by the obtained solutions.

Maximize f,

Maximize f,



Hypervolume

Hypervolume (HV) Is the volume of the dominated
region by the obtained solutions. The HV value can
can be improved by adding new solutions.

Maximize f,
Maximize f,

Maximize f; Maximize f;



|IGD: Inverted Generational Distance

Average distance from each reference point on
the Pareto front to the nearest solution.

Maximize f,

— Pareto front O«
@ Reference Set

O Solution Set

Maximize f,



|IGD: Inverted Generational Distance

Average distance from each reference point on
the Pareto front to the nearest solution. The IGD
value can be improved by adding new solutions.

/

O
@<

Maximize f,
Maximize f,

— Pareto front O« — Pareto front O«
@ Reference Set @ Reference Set

O Solution Set O Solution Set
Maximize f, Maximize f,




Specification of Population Size

How about the following settings?

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 5,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 50



Specification of Population Size

How about the following settings?

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 5,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 50
Comparison under these settings may be OK
for single-objective optimization.



Specification of Population Size

How about the following settings?

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 5,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 50
Comparison under these settings may be OK
for single-objective optimization. However, for
multi-objective optimization, ...
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Specification of Population Size

How about the following settings?

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 5,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 50

The comparison may be unfair.



How to compare EMO algorithms with/without
an archive population?

Some algorithms have an archive population
whereas others do not have.

Current Population —>| Next Population —

Ir———.\

. Archive Populatlon =1 Archive Populatlon o



How to Compare Different Algorithms

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 100
Size of Archive Population: 1,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 100
No Archive Population

The comparison may be unfair.
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Our Idea (CEC 2016): Solution selection

from all the examined solutions

Algorithm A:
Crossover probability: 1.0
Mutation probability: 1/n (n: string length)
Population size: 100
Size of Archive Population: 1,000

Algorithm B:
Crossover probability: 0.2
Mutation probability: 5/n (n: string length)
Population size: 100
No Archive Population

The comparison may be unfair ==> Solution
selection from all the examined solutions.



Performance of the Final Population

Five-Objective WFG3
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Selection of 50 Solutions

from all the Examined Solutions

1.2 . . .
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Performance Comparison using

Solution Selection Methods

R. Tanabe, H. Ishibuchi, and A. Oyama, “Benchmarking
multi- and many-objective evolutionary algorithms under
two optimization scenarios,” IEEE Access, Dec 2017.

Two Optimization Scenarios:
(1) Use of the final population
(1) Use of selected solutions from the examined solutions

Observation: Performance comparison results are
different between the two optimization scenarios.



Difficulties in Performance Evaluation

1. How to Specify the Population Size
2. How to Specify the Reference Point for HV
3. How to Specify the Reference Points for IGD

[1] H. Ishibuchi et al., Reference point specification in hypervolume calculation
for fair comparison and efficient search, Proc. of GECCO 2017, pp. 585-592.
(Proposal of the Basic Idea)

[2] H. Ishibuchi et al., How to specify a reference point in hypervolume
calculation for fair performance comparison,” Evolutionary Computation
(2018). (Extended Journal Version)



Two Solution Sets:

Which has the larger hypervolume?




Hypervolume (HV)

Comparison results depends on the reference point

When the reference point is close to the Pareto front:

[ N |

Better Solution Set



Hypervolume (HV)

Comparison results depends on the reference point

When the reference point is far from the Pareto front:

Better Solution Set



Hypervolume (HV)

Comparison results depends on the reference point

A small move can change the comparison result.
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Better Solution Set




How to Specify the Reference Point?

Ishibuchi et al. GECCO 2017, EC Journal

To specify areference point so that no solution in a
uniformly obtained solution set has a dominant effect.

=» All solutions have the same (similar) HV contribution.
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Proposed Specification



Proposed Idea: Basic ldea

To specify areference point so that no solution in a
uniformly obtained solution set has a dominant effect.

=» All solutions have the same (similar) HV contribution.
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Proposed Idea: Basic ldea

To specify areference point so that no solution in a
uniformly obtained solution set has a dominant effect.

=» All solutions have the same (similar) HV contribution.
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Proposed Specification



Dependency of Optimal Distribution of

Solutions on the Shape of the Pareto Front
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Figure 1: Obtained solution sets for the three-objective normalized DTLZI.
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Figure 2: Obtained solution sets for the three-objective normalized Minus-DTLZ1.



Optimal Distribution of Solutions depends on

the reference point specification

==> This means that the best weight (reference) vector
specification in MOEA/D, NSGA-III, MOEA/DD etc.
depends on the reference point specification.
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More boundary vectors are needed.



Dependency of Optimal Distribution of

Solutions on the Shape of the Pareto Front
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Dependency of Optimal Distribution of
Solutions on the Shape of the Pareto Front
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Figure 6: Obtained solution sets for the five-objective normalized DTLZ1 problem.
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Figure 7: Obtained solution sets for the five-objective Minus-DTLZ1 problem.



Difficulties in Performance Evaluation

1. How to Specify the Population Size
2. How to Specify the Reference Point for HV
3. How to Specify the Reference Points for IGD

[1] H. Ishibuchi et al., Reference point specification in inverted generational
distance for triangular linear Pareto front, IEEE Trans. on Evolutionary
Computation (2018). (Reference Point Specification)

[2] H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance evaluation
ability of a modified inverted generational distance indicator,” Proc. of
GECCO 2015, pp. 695-702. (Modification of the IGD Indicator)



IGD-based performance comparison results

depends on the reference point specifications

Average distance from each reference point on
the Pareto front to the nearest solution.

Maximize f,

— Pareto front O«
@ Reference Set

O Solution Set

Maximize f,



IGD-based performance comparison results

depends on the reference point specifications

Specification of reference points is important.

|IGD: 1.2 IGD: 1.1
Better

Maximize f,
>
O
OQ\
Maximize f,

Maximize f, Maximize f,



IGD-based performance comparison results

depends on the reference point specifications

Specification of reference points is important.

Maximize f,

Maximize f, Maximize f,



Use of uniformly distributed solutions

>

[] Reference Point
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Minimize f,

(a) Reference pont specification. (b) Retference points (H = 12).

Fig. 5. Illustration of the reference point specification in (a), and an example
of specified reference points for the three-objective normalized DTLZI1 1n (b).



Another Approach:

Use of uniformly distributed solutions

Counter-Intuitive Example:

Comparison of the three solution sets (small closed circles)
In (a)-(c) using the reference point set (open circles).
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(a) IGD = 0.0680. (b) IGD = 0.0495. (¢) IGD = 0.0680.

Fig. 6. Three solution sets to be compared (solutions: small closed circles,
reference ponts: open circles) and their IGD values.



How to specify a set of reference points

Current Standard:
Use of a large number of uniformly distributed
solutions.



How to specify a set of reference points

Current Standard:
Use of a large number of uniformly distributed

solutions.

This is not always a good method as shown in the
following slides.



Analysis of IGD from a Viewpoint
of Optimal Distribution of Solutions
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IEEE Trans. on Evolutionary Computation (2018)
Reference Point Specification in Inverted Generational

Distance for Triangular Linear Pareto Front

Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima




Optimal Distribution of Solutions for IGD

When an infinitely large number of uniformly distributed
reference points on the Pareto front are used, the best

distribution of solution is as follows (u: population size)
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Optimal Distributions of Solutions for IGD are
not always intuitive
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Optimal Distributions of Solutions for IGD are

not always intuitive
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Optimal Distributions of Solutions for IGD are

not always intuitive

When we randomly generate 100,000 reference points,
the optimal distributions of solutions are as follows:
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Pareto Compliance of IGD

[1] H. Ishibuchi et al., Reference point specification in inverted
generational distance for triangular linear Pareto front, IEEE
Trans. on Evolutionary Computation (2018). (Reference Point
Specification)

[2] H. Ishibuchi, H. Masuda, Y. Nojima, A study on performance
evaluation ability of a modified inverted generational distance
Indicator,” Proc. of GECCO 2015, pp. 695-702. (Modification of
the 1GD Indicator)




Example of Two Solution Sets A and B

Solution set A dominates B
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A dominates B (A Is better than B).



Example of Two Solution Sets A and B

Solution set A dominates B
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A dominates B (A Is better than B).



Use of IGD ==> Inconsistent Results

Solution set B Is evaluated as being better than A

IGD Is larger IGD Is smaller

10 10

8 | 8 |

6 6

4 b 4 b

2" @ Reference Point 2r

. '—Pallreto Front . ) ' . . . .

0 2 4 6 8 10 0 2 4 6 8 10

A dominates B (A is better than B).
However, B Is evaluated as being better than A.



Another Example

Solution Set B (0) dominates A (many X)

1.0®

Maximize f,(x)

- — Pareto front
e Reference point
x Solution in A

|O S|O|u'|t|0n||nB| | | v
0.0 Maximize f;(x) 1.0




|GD Calculation for Solution Set A
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|GD Calculation for Solution Set B

Maximize f,(x)

0.0

I Pareto front

® Reference point
x Solution in A
|O Slolu’lcionlin1$ |

Maximize f;(x)




Inconsistent Evaluation Results

IGD(A) I1s smaller than IGD(B)

I\/Iaximize f,(X)

Solutlon set A (many X) IS evaluated as

being better than B (one open circle).
0.0 Maximize f,(X) 1.0




|GD* Calculation

(Ishibuchi et al., EMO 2015, GECCO 2015)

The calculation is from each reference point to the
dominated region by the obtained solution set.

IGD* Is smaller IGD™* Is larger
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Use of IGD* ==> Consistent Results

Solution set A Is evaluated as being better than B

|IGD* Is not Inconsistent with the Pareto
dominance relation between solution sets.

0 |IGD* I1s smaller

IGD™ Is larger

O

| ® Reference Poi
| — Pareto Front

IS evaluated as
being better than B




Performance Indicators

In JMetal 5 Web Site
Welcome to the jMetal § Web Site

Metal is ... Summary of features

jMetal stands for Metaheuristic Algorithms in * Multi-objective algoritms: NSGA-Il, SPEAZ2,

Java, and it is an object-oriented Java-based PAES, PESA-II, OMOPSO, MOCell, AbYSS,

framework for multi-objective optimization with MOEA/D, GDE3, IBEA, SMPSO, SMPSOhv,

metaheuristics. SMS-EMOA, MOEA/D-STM, MOCHC,
MOMBI, MOMBI-II, NSGA-Ill, WASF-GA,
GWASF-GA

* Quality Indicators: hypervolume, spread,
generational distance, inverted generational
distance, Inverted generational distance
plus, additive epsilon.



Conclusion

1. New EMO algorithms may be needed for many-
objective problems.

2. A wide variety of many-objective test problems
with various characteristic features are needed
for healthy algorithm development. Analysis of
real-world problems seems to be very important.

3. How to evaluate many-objective algorithms (with
no information from the decision maker) may
need a lot of further discussions.



Conclusion

4. Use of test problems with inverted triangular
Pareto fronts makes various issues clear:

- Strong dependency of the performance of MOEA/D
on the shape of the Pareto front.

- Necessity of weight (reference) vector adaptation.

- Strong dependency of the optimal distribution of
solutions for HV maximization on the reference
point specification.



Other Topics

1. Solution Selection: To choose a small number of
non-dominated solutions as candidate solutions,
which are presented to the decision maker.

2. Objective Selection: (1) to improve the efficiency
of many-objective search by decreasing the
number of objectives, (ii) to support the solution
selection by decreasing the number of non-
dominated solutions.

3. Normalization: Objective space normalization is
Included in many EMO algorithms. Its necessity
IS clear. It also have some potential negative
effects.



Other Topics

4, Scalability: Problems with

- alarge num
- alarge num
- alarge num

ner of objectives (many-objective)
per of variables (large-scale)

ner of constraints

- high percentage of infeasible solutions
- a large number of overlapping Pareto optimal

solutions In

the objective space (multi-modal).

- alarge number of local Pareto fronts.
- expensive fithess evaluation

- search for
solution for

a large number of non-dominated
knowledge extraction
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