

Bio-inspired Community Finding in Social Networks, new trends and challenges

DAVID CAMACHO

David.Camacho@uam.es

Computer Science Department

Autonomous University of Madrid

Applied Intelligence & Data Analysis <u>http://aida.ii.uam.es</u> Universidad Autónoma de Madrid

Outline

- Social Network Analysis
- Community Finding Problems
- Evaluating communities
- Bio-inspired Community Detection Algorithms

Outline

Social Network Analysis

- Community Finding Problems
- Evaluating communities
- Bio-inspired Community Detection Algorithms

Social Network Analysis

- Social Networks are created from the social interactions of humans
- Nowadays, SNs have gained popularity due to the famous SN platforms available on the Internet
- This popularity has generated a **huge amount** of data:
 - The users interact with each others.
 - Due to its topology and its behaviour is really simple to spread any though.
- For these reasons, companies and the research community have focused their effort to analyse the SNs

G. Bello-Orgaz, J. Jung, D. Camacho. Social big data: Recent achievements and new challenges. Information Fusion, 28: 45-59, 2016

Social Network Analysis

- Social network analysis (SNA) is a mathematical or computer science theory which consist of modelling the individuals of a network and the relationships between them, and extracting some valuable hidden information using algorithms and statistics
- Related areas: sociology, anthropology, social psychology (origins); graph theory, matrix algebra and statistics (mathematical bases); physics, computer science, informatics, biology (increasing)

Social Network Analysis

□ Contributions of network analysis to **online communities**

- Identify the group creators
- Identify **opinion leaders**
- □ Identify **key accounts** of a network
- Identify **information consumers** in a network
- Identify the **main distributors of information** in the network
- Follow the **dissemination** of a message
- Determine the **dominant genre** of a network
- Multimember ship identify an individual
- Identify individuals keep having the **most or the relationships** in a network
- Identify the network of an individual (ego)
- Communities detection
- Topic detection

Tools for SNA

- 1. There exist a large number of software for SNA. Some examples are:
 - Gephi: <u>https://gephi.org/</u>
 - Pajek: http://mrvar.fdv.uni-lj.si/pajek/
 - UCINET: https://sites.google.com/site/ucinetsoftware/home
 - KrackPlot: <u>http://www.andrew.cmu.edu/user/krack/krackplot.shtml</u>
 - GUESS: http://graphexploration.cond.org/

- KDNuggets: Top 30 Social Network Analysis and Visualization Tools
- https://www.kdnuggets.com/2015/06/top-30-social-network-analysis-visualization-tools.html
- Graphviz, Graph-tool, EgoNet, Cuttlefish, InFlow, JUNG, NetMiner, NetworkX, SocNetV, SVAT,...

Outline

- Social Network Analysis
- **Community Finding Problems**
- Evaluating communities
- Bio-inspired Community Detection Algorithms

□ The Community Detection Problem (CDP)

- □ Can be defined as the **division** of a graph into **clusters** or **groups** of nodes where each one includes: a strong internal cohesion, and a week external cohesion
- Applied in **several disciplines** such as sociology, biology, or computer science, whose information can be easily represented as a network or **graph**.
- □ Similar users belong to the same community, whereas different users are not located in the same group.
- \Box The key question is how we define that two users are "similar".

Santo Fortunato. Community detection in graphs. Physics reports 486 (3-5), 75-174, 2010

■ Types of CFPs:

Partitional methods: a disjoint division of the graph is performed (each vertex will only belong to a single community), NP-hard problem. Popular algorithm: Edge Betweenness Centrality (EBC), Girvan & Newman; others: Fast Greedy or Louvain Method (based on Modularity), NetWalk, WalkTrap, InfoMaps (based on Random Walks)

• Overlapping methods:

- Fuzzy methods: each node is associated with a community using a membership factor
- crisp (non-fuzzy) methods: the relationship between a node and a cluster is binary

■ Types of CFPs:

- Overlapping methods crisp (non-fuzzy) methods:
 - Clique Percolation Method (**CPM**), based on the clique concept
 - Cluster-Overlapping Newman Girvan Algorithm (CONGA), EBC and CONGO, based on betweenness
 - Cluster Affiliation Model for Big Networks algorithm (BIGCLAM), CoDA, based on an statistical approach (model-based methods)

- The key concept in CFP is to find a '**good**' partition or community
- Usually the quality of any community depends on:
 - Internal connections (metrics): used of assess/evaluate how connected are the nodes inside a community
 - External connections (metrics): used of assess/evaluate how disconnected are the communities
 - The goal will be finding communities with strong internal connections and weak external connections

- General metrics and relational properties from graph theory:
 - Degree (in-degree, out-degree, average degree).
 - Density
 - Components, cliques and cores
 - Centrality
 - Centralisation
 - Erdos/Bacon number(s)
 - Diameter

. . .

٠

• Triangle Partition Ration (TPR): measure of graph cohesion (fraction of nodes in a graph that

belongs to a triangle) $TPR = \frac{|\{u : u \in V, \{(v, w) : v, w \in V, (u, v) \in E, (u, w) \in E, (v, w) \in E\} \neq \emptyset\}|}{|V|}$

• Local Clustering Coefficient (LCC): measures the transitivity of a node into the graph

 $LCC_i = \frac{2 \times \sum_{j,h} a_{jh} a_{ij} a_{ih} a_{ji} a_{hi}}{k_i (k_i - 1)}$

- Global Clustering Coefficient (GCC): measures the global transitivity of the graph $GCC = \frac{3 \times |Triangles|}{|Triples|}$
- Density (D): measures how dense (n° edges/nodes) is the graph

 $D = \frac{|E|}{|V|(|V| - 1)/2}$

 Clique Number (CN): A clique of a graph is a subset of mutually adjacent vertices in V (every two vertices in the subset are connected by an edge). A clique is maximal if it is not contained by any other clique.

• Centralization (Cd): measures how central is a node (based on centrality metric)

$$C_d(G) = \frac{\sum_{i=1}^n \left[C_d(v^*) - C_d(v_i)\right]}{n^2 - 3n + 2}$$

- External connectivity (from graph theory)
 - Expansion (Exp): average number of external edges per node

$$Exp(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{|C|}$$

• Separability (Sep): ratio between internal and external nodes

 $Sep(C) = \frac{|\{(u,v) \in E : u \in C, v \in C\}|}{|\{(u,v) \in E : u \in C, v \notin C\}|}$

• Cut Ratio (CR): ratio between external edges and all the possible external edges

$$CR(C) = \frac{|\{(u, v) \in E : u \in C, v \notin C\}|}{n_c(n - n_c)}$$

Outline

- Social Network Analysis
- Community Finding Problems
- **D** Evaluating communities
- Bio-inspired Community Detection Algorithms

- Once the CFA generates a set of communities it's essential to evaluate their quality.
- This is a classical problem in **Graph clustering**
- There exist two possible situations:
 - Evaluation with ground truth
 - Evaluation without ground truth

When ground truth is available, we have at least partial knowledge of what communities should look like.

We are given the correct community (clustering) assignments.

- Measures:
 - Average F1 Metric
 - **Omega Index** (overlapping version of the Adjusted Rand Index (ARI); Hubert and Arabie 1985)

$$\omega_e(C_1, C_2) = \frac{1}{M^2} \sum_{j=0}^{\max(K_1, K_2)} |t_j(C_1)| \cdot |t_j(C_2)|$$

Normalized Mutual Information (NMI): is a metric related to the Information Theory that can be used to calculate the similarity between two graph partitions

NMI(X|Y) = 1 - [H(X|Y) + H(Y|X)]/2.

• Accuracy in the number of communities

- When the ground truth is unknown, there are lots of different metrics to evaluate the solutions.
 - Modularity (Q) is the most used and best known quality measure for graph clustering techniques. This measure is based on the idea that a random graph is not expected to have a cluster structure.
 - Q it's widely used in CFA, but calculate Q is a Np-hard problem

$$Q = \frac{1}{(2m)} \sum_{vw} \left[A_{vw} - \frac{k_v k_w}{(2m)} \right] \delta(c_v, c_w) = \sum_{i=1}^c (e_{ii} - a_i^2)$$

- Scoring functions based on internal connectivity: internal density
- Scoring functions based on external connectivity: expansion
- Scoring functions that combine internal and external connectivity
- Scoring function based on a *network model*

Modularity (Q)

Sample Network corresponding to the Adjacency matrix with 10 nodes, 12 edges

Network partitions that maximize Q. Maximum Q=0.4896

Modularity (Q)

Example of modularity measurement and colouring on a scale-free network

Community Detection Algorithms

Javed et.al. Community detection in networks: A multidisciplinary review. Journal of Network and Computer Applications. Vol. 108, 2018

Tools to perform Community Finding Problems

- iGraph: <u>http://igraph.org</u> (7 community detection algorithms: Edgebetweenness, Walktrap Leading Eigenvectors, Fast Greedy, Label Propagation, Louvain, Spinglass, InfoMap. R, C/C++ and Python versions)
- Gephi: <u>https://gephi.org/</u>
- □ JUNG: <u>http://jung.sourceforge.net</u>
- SNAP library (Stanford Network Analysis Platform): <u>http://snap.stanford.edu</u> (includes Modularity, Girvan-Newman and Clauset-Newman-Moore algorithms)

Tools to perform Community Finding Problems

CIRCULO: <u>https://www.lab41.org/circulo-a-community-detection-evaluation-framework/</u>

A large set of algorithms: Fast Unfolding CESNA Girvan Newman BigClam Fast Newman CONGA Infomap BiSBM Clique Spectral Percolation Clustering **Clauset Newman-Moore** Leading WalkTrap Eigenvector Label CONGO Propogation

Outline

- Social Network Analysis
- Community Finding Problems
- Evaluating communities
- **Bio-inspired Community Detection Algorithms**

□ We have a plenty of nature-based and bio-inspired algorithms...

Taxonomy of Bio-Inspired Computation

Why is interesting to apply Nature and Bio-inspired algorithms to SNA?

- Most of SNA-based problems (as CDP) are usually NP-hard
- Classical (graph mining or social mining) algorithms **do not work well** with Large or Very Large Networks
- □ In some problems a **sub-optimal solution** would be enough
- □ Some SNA-based problems needs from:

□ Heuristics

- **Knowledge from the context** (not only the network structure!)
- □ Work with several criteria or objectives
- Bio-inspired algorithms are particularly good to manage previous problems

□ Most of them have been used in SNA and CDPs...

- "A Multi-Objective Genetic Algorithm for overlapping community detection based on edge encoding". Bello-Orgaz, Sancho Salcedo, David Camacho. Information Sciences. Vol. 462, pp. 290-314, 2018
- 2. "ACO-based clustering for Ego Network analysis". Antonio Gonzalez-Pardo, Jason J. Jung, David Camacho. Future Generation Computer Systems, Vol. 66, pp. 160-170, 2017.
- 3. "Adaptive k-means algorithm for **overlapped graph clustering**". G Bello-Orgaz, HD Menéndez, D Camacho. International journal of neural systems. Vol. 22 (05), 1250018, 2012
- 4. "Firefly algorithms for multimodal optimization". Xin-She Yang. International symposium on stochastic algorithms, 2009. p. 169-178.
- "Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance". James Kennedy. IEEE conference on Evolutionary Computation, 1999. p. 1931-1938.
- 6. "Community detection in social networks with **genetic algorithms**". Clara Pizzuti. **Proceedings of the 10th annual conference on Genetic and evolutionary computation**. ACM, 2008. p. 1137-1138.

□ Our work on CDAs based on GA/MOGAs

- GA (mono objective):
 - GCF-I (based on distance)
 - GCF-II (based on network topology metrics)

"Adaptive k-means algorithm for overlapped graph clustering". G Bello-Orgaz, HD Menéndez, D Camacho. International journal of neural systems. Vol. 22 (05), 1250018, 2012

MOGA (multi objective, overlapping):

- □ Node-based MOGA-OCD
- Edge-based MOGA-OCD

"A Multi-Objective Genetic Algorithm for overlapping community detection based on edge encoding". Gema Bello-Orgaz, Sancho Salcedo, David Camacho. Information Sciences. Vol. 462, pp. 290-314, 2018

□ Genetic Graph-based Approaches (K-fixed GCF-I)

K-fixed GCF-I

- Based on a standard GA.
- Vectorial **Binary** encoding.
- K parameter is fixed as input of the algorithm.

Encoding

- Each chromosome is used to represent a community.
- Each allele represents the membership of a node into the graph.
- The chromosome length will be equal to the number of nodes belonging to the graph.

Gema Bello-Orgaz, HD Menéndez, D Camacho."Adaptive k-means algorithm for overlapped graph clustering". International journal of neural systems. Vol. 22 (05), 1250018, 2012

□ Our method to Multi-Objective Genetic Approaches for OCD:

- Two new MOGA approaches whose main difference lies in the encoding:
 - ONODE-DASED MOGA-OCD the encoding represents the nodes of the graph.
 - 2 Edge-based MOGA-OCD where a new encoding schema based on the edges is used.
- Optimizes two different objective functions:
 - To maximize the internal connectivity.
 - **2** To minimize the external connections to the rest of the graph.
- A comparative assessment of several connectivity metrics has been carried to select the most appropriate.
- Finally, the two new algorithms have been evaluated against other well-known algorithms from the state of the art.

Algorithm 2: Multi-Objective Genetic Algorithm for Overlapping Community Detection (MOGA-OCD). **Input**: A graph N = (V, E) where V represents the set of vertices denoted by $\{v_1, \ldots, v_n\}$, and E is the set of edges E denoted by e_{ij} that represents a connection between the vertices v_i and v_j . Parameters m_{int} and m_{ext} represent the connectivity metrics used as the optimization criteria. Positive numbers ngen, nconv μ , λ , mut pb and *indmut pb* represents the main MOGA parameters to be fixed. **Output**: PoF contains the best individuals $1 C \leftarrow \emptyset$: 2 $i \leftarrow 0$; s convergence $\leftarrow 0$; **4 while** $i \leq ngen \wedge convergence = 0$ **do** if ngen = 0 then 5 $C \leftarrow InitRamdomPop(\lambda);$ 6 else 7 $C \leftarrow Cbest$: 8 for $j \leftarrow \mu$ to λ do 9 $ind1 \leftarrow RandomSel(Cbest);$ 10 $ind2 \leftarrow RandomSel(Cbest);$ 11 $ind1, ind2 \leftarrow Crossover(ind1, ind2);$ 12 mutchoice = Random(0, 1);13 if mutchoice < mut pb then 14 **Node-based**: a new node is randomly $ind1 \leftarrow Mutation(ind1, indmut pb);$ 15 selected from the graph mutchoice = Random(0, 1): 16 Edge-based: a new edge is randomly **if** *mutchoice* < *mut pb* **then** 17 selected from the set of the adjacent edges $ind2 \leftarrow Mutation(ind2, indmut pb)$ 18 $C \leftarrow C \cup \{ind1, ind2\};$ 19 $F \leftarrow Fitness(C, m_{int}, m_{ext});$ 20 Cbest \leftarrow NonDominatedSortAndSelNBestNSGA2(C, F, μ); 21 $i \leftarrow i + 1;$ 22 convergence \leftarrow CheckConvergence(Cbest, nconv); 23

24 return *ParetoFront(C)*;

Multi-Objective Genetic Approaches (Edge-based): encoding

Real world networks tend to be sparse and the node-based methods often have difficulties to find large communities.

Edge-based Encoding

- Vectors of integer values whose size are equal to the total number of edges.
- The position of each allele correspond to a edge.
- Each allele takes a value between the adjacent edges to the specified edge of this position.

□ Multi-Objective Genetic Approaches (Edge-based)

- 1. There exist multiple representations for the same individual
- 2. Each allele represents a <u>specific edge of the graph</u>, and the value of **K** (number of communities to find in the graph) has been directly encoded as part of the chromosome
- 3. A **decoding phase** (from communities of edges \Rightarrow communities of nodes) is needed

□ Multi-Objective Genetic Approaches (Edge-based)

1. Generation of communities of edges

□ Multi-Objective Genetic Approaches (Edge-based)

 Generation of communities of nodes: each edge community is transformed into a node-based community, which contains the source and target node for each edge belonging to the original community (decoding phase)

□ Multi-Objective Genetic Approaches (Edge-based)

1. Generation of communities of nodes

Multi-Objective Genetic Approaches (Edge-based vs Node-based)

Algorithm Description

The population evolves according to the node-based version except for the application of the three steps:

- The initial population is randomly generated taking into account that each allele has to take a value only between the adjacent edges.
- The mutation operator has been modified to guarantee that new generated individuals satisfy the encoding rules.
- **3** Each individual should be decode before computing the fitness function.

- Two phases:
 - Analysis of the different metrics related to the network connectivity (internal/external). Goal: select the best metrics to tune up MOCA-OCD algorithm
 - 2. MOGA-OCD performance is compared against other traditional CDA algorithms

• Description of dataset collection of real networks used for the experimental phase

Dataset	Description	Nodes	Edges	GCC	CN	GT	N. Com.
nba_schedule	Games played in the 2013–2014 NBA season	30	421	0.99	5	Yes	6
southernwomen	Southern women social groups	32	93	0	2	No	-
karate	Zacharys karate club	34	78	0.26	15	Yes	2
senate	Senate voting data in 2014	87	1803	0.97	45	Yes	3
football	American football games in 2000	115	613	0.41	9	Yes	12
revolution	Colonial American dissidents	261	319	0	2	No	-
pgp	Interactions in pretty good privacy	10,680	24,340	0.37	25	No	-
p2p-Gnutella25	Snapshots of the Gnutella peer-to-peer file sharing network from August 2002	22,687	54,705	0.01	4	No	-
email-Enron	Enron email communication network (edge indicated that email was exchanged)	36,692	367,662	0.08	20	No	-
brightkite	Friendship network of Brightkite users	58,228	214,078	0.11	37	No	-)

Comparative assessment of connectivity network metrics using the Karate dataset. Internal connectivity metrics are marked in *light gray*, while External connectivity metrics are marked in *dark Grey*.

Separability is found as the best metric for the fitness function related to external connectivity

	Metric								_	_	<u> </u>
Dataset	m _{ext}	m _{int}	N[C/N]	Den _{avg}	LCC_{avg}	TPR_{avg}	GCC_{avg}	CN_{avg}	Exp_{avg}	Sep_{avg}	CR_{avg}
karate	Sep	LCC	[2.4/20.07]	0.41±0.13	0.73±0.10	0.96 ± 0.03	0.49 ± 0.11	4.48 ± 0.42	1.08 ± 0.52	11.75±5.75	0.06 ± 0.02
		GCC	[2.6/17.44]	0.45 ± 0.17	0.70 ± 0.11	0.95 ± 0.03	0.53 ± 0.17	4.38 ± 0.46	1.48 ± 1.00	9.93 ± 6.08	0.07 ± 0.04
		TPR	[4.4/15.03]	0.49 ± 0.14	0.75±0.06	$0.98{\pm}0.01$	0.52 ± 0.12	4.23 ± 0.35	1.69 ± 0.83	6.08 ± 3.90	0.08 ± 0.02
		CN	[2/20.65]	0.37 ± 0.16	0.69 ± 0.07	0.95 ± 0.02	0.45 ± 0.12	4.6 ± 0.52	0.89 ± 0.63	14.86±5.94	0.06 ± 0.03
		Den	[2.7/15.12]	$0.55 {\pm} 0.10$	0.71 ± 0.11	0.93 ± 0.10	$0.57{\pm}0.12$	4.07 ± 0.31	1.70 ± 0.66	8.31±1.94	0.07 ± 0.02
	Exp	LCC	[2/20.5]	0.24±0	0.63±0	0.95 ± 0	0.35±0	5±0	0.54 ± 0.03	4.03±0.32	0.04±0
		GCC	[2/20.4]	0.24 ± 0	0.63 ± 0.01	0.95 ± 0	$0.35 {\pm} 0.01$	4.9 ± 0.21	0.56 ± 0.04	3.91±0.36	0.04 ± 0
		TPR	[2/20.25]	0.24 ± 0	0.63 ± 0.01	0.95 ± 0	$0.34{\pm}0.01$	4.9 ± 0.21	0.57 ± 0.06	3.75 ± 0.47	0.04 ± 0
		CN	[2/20.4]	0.24 ± 0	0.63 ± 0.01	0.95 ± 0	0.35 ± 0.01	4.95 ± 0.16	0.55 ± 0.05	3.93 ± 0.34	0.04 ± 0
		Den	[2.3/21.92]	0.25 ± 0.13	0.62 ± 0.04	0.93 ± 0.06	0.33 ± 0.09	4.66 ± 0.45	0.48 ± 0.27	6.95 ± 3.04	0.04 ± 0.01
	CR	LCC	[2/21.2]	0.23 ± 0.01	0.64 ± 0.01	0.95 ± 0.01	0.35 ± 0.01	4.95 ± 0.16	0.47 ± 0.07	5.52±1.30	0.04±0
		GCC	[2/21.8]	0.23 ± 0.01	0.65 ± 0.01	0.95 ± 0	0.35 ± 0.01	5±0	0.43 ± 0.05	6.57±1.08	0.03±0
		TPR	[2.2/21.3]	0.23 ± 0.01	0.65±0	0.95 ± 0.01	0.34 ± 0.01	4.93 ± 0.14	0.45 ± 0.06	5.98 ± 1.25	0.03±0
		CN	[2/21.9]	0.27 ± 0	0.65 ± 0	0.95 ± 0	0.35±0	5±0	0.41 ± 0.02	6.78±0.64	0.03±0
		Den	[2/22]	0.23±0	0.65±0	0.95 ± 0	0.34±0	5±0	0.40±0	7.08±0	0.03±0

Results of network metrics grouped by **internal connectivity** metrics using **Separability** as external function objective in MOGA-OCD algorithm.

LCC is selected as metric for the fitness function related to internal connectivity

DataSet	Metric	Q _{best}	Qavg	NMI _{best}	NMI _{avg}	FNMI best	FNMI _{avg}
Karate	LCC	0.44	$0.35~\pm~0.05$	0.69	$0.52~\pm~0.10$	0.54	$0.42~\pm~0.07$
	GCC	0.44	$0.34~\pm~0.06$	0.45	$0.34~\pm~0.09$	0.45	$0.29~\pm~0.13$
	TPR	0.42	$0.30~\pm~0.07$	0.44	$0.38~\pm~0.06$	0.45	$0.37~\pm~0.07$
	CN	0.40	0.31 ± 0.11	0.40	$0.31~\pm~0.08$	0.40	$0.31~\pm~0.08$
	Den	0.40	$0.31~\pm~0.07$	0.45	$0.34~\pm~0.11$	0.45	$0.31~\pm~0.14$
Senate	LCC	0.85	0.85 ± 0	0.88	0.88 ± 0	0.70	0.70 ± 0
	GCC	0.85	$0.85~\pm~0.01$	0.88	$0.88~\pm~0.01$	0.70	$0.70~\pm~0.01$
	TPR	0.85	$0.85~\pm~0.01$	0.88	$0.88~\pm~0.03$	0.70	$0.69~\pm~0.01$
	CN	0.85	0.85 ± 0	0.88	$0.88~\pm~0.01$	0.70	$0.70~\pm~0.01$
	Den	0.85	0.85 ± 0	0.88	0.88 ± 0	0.70	0.70 ± 0
Football	LCC	0.29	$0.23~\pm~0.04$	0.39	$0.30~\pm~0.06$	0.32	$0.26~\pm~0.05$
	GCC	0.29	$0.22~\pm~0.05$	0.33	$0.26~\pm~0.06$	0.28	$0.21~\pm~0.05$
	TPR	0.15	$0.13~\pm~0.01$	0.36	$0.28~\pm~0.08$	0.25	$0.18~\pm~0.06$
	CN	0.16	$0.13~\pm~0.02$	0.36	$0.29~\pm~0.07$	0.21	$0.17~\pm~0.04$
	Den	0.26	$0.32~\pm~0.02$	0.37	$0.27~\pm~0.06$	0.29	$0.23~\pm~0.06$

- Comparative assessment of community detection algorithms for all the datasets with ground truth.
- Small networks
- CDAs usually provide good results when the graph is **highly structured** and with a small-medium size, so the algorithm can partition it according to its network topology.
- MOGA-OCD obtains similar results

DataSet	Algorithm	N. Com.	Avg. nodes	Q	NMI	FNMI
Nba_schedule	Groundtruth	6	5	0.281	1	1
	CPM	2	15	0.879	0.39	0.24
	Coda	20	5	0.069	0.31	0.19
	Conga	2	15	0.879	0.39	0.24
	Congo	2	15	0.879	0.39	0.24
	MOGA-OCD	2	15	0.879	0.39	0.24
Senate	Groundtruth	3	42	0.810	1	1
	CPM	1	87	0	0	0
	Coda	79	15	0	0.16	0.08
	Conga	2	44.5	0.852	0.88	0.70
	Congo	2	44.5	0.852	0.88	0.70
	MOGA-OCD	2	44.5	0.852	0.88	0.70
Karate	Groundtruth	2	17	0.261	1	
	CPM	3	6	0.515	0.26	0.21
	Coda	36	4	0	0.18	0.10
	Conga	4	8.5	0.476	0.32	0.22
	Congo	3	6	0.322	0.25	0.20
	MOGA-OCD	2.7	17.4	0.358	0.54	0.43
Football	Groundtruth	12	10	0.642	1	1
	CPM	4	13	0.445	0.25	0.16
	Coda	76	7	0	0.45	0.25
	Conga	6	31.5	0.511	0.39	0.24
	Congo	11	9	0.342	0.52	0.49
	MOGA-OCD	4	34	0.216	0.31	0.27

- Comparative assessment of community detection algorithms for the dataset collection without ground truth.
- Large graphs
- For unstructured or sparse graphs, the accuracy and quality of the communities detected by these algorithms significantly decrease (CPM, CONGA,CONGO)
- MOGA-OCD algorithm achieves good results in both quality measures for the different dataset

DataSet	Algorithm	N. Com.	Avg. nodes	Q
Southernwomen	CPM	_	-	_
	Coda	51	4	0
	Conga	4	11	0.475
	Congo	3	14	0.665
	MOGA-OCD	2	26	0.393
Revolution	CPM	-	-	-
	Coda	45	57	0
	Conga	60	5	0.001
	Congo	63	5	0.001
	MOGA-OCD	7	38.7	0.087
pgp	CPM	734	3	0.568
	Coda	100	135	0.560
	Conga	-	-	-
	Congo	-	-	-
	MOGA-OCD	2083	9.3	0.181
p2p-Gnutella25	CPM	540	3.4	0.029
	Coda	98	498.7	0.044
	Conga	-	-	-
	Congo	-	-	-
	MOGA-OCD	2069	26.4	0.040
Email-Enron	CPM	1889	13.9	0.515
	Coda	113	5.04	0.004
	Conga	-	-	-
	Congo	-	-	-
	MOGA-OCD	1448	44.9	0.090
Brightkite	CPM	2098	13.6	0.552
	Coda	109	959.3	0.237
	Conga	-	-	-
	Congo	-	-	-
	MOGA-OCD	2230	47.5	0.101

New Trends & Challenges

Related to CDP and bio-inspired algorithms, it can be highlithed three research lines of work:

- 1. Temporal networks (Dynamic behavior): Dynamic CDAs, where both nodes or edges can appear or dissapear during the evolution of the network
 - Folino and Pizzuti (2017)
 - Panizo, Bello, Camacho (2018)
- 2. Multilayer networks: where the nodes can be connected by multiple types of relationships
 - Dong et al. (2014)
 - DMultiMOGA (2017)
 - Gonzalez-Pardo, Camacho (2018)
- 3. Signed networks: where the nodes have signed (positive/negative) connections
 - Amelio and Pizzuti (2016)
 - DMultiMOGA (2017)

Publications

- "A Multi-Objective Genetic Algorithm for overlapping community detection based on edge encoding". Gema Bello-Orgaz, Sancho Salcedo, David Camacho. Information Sciences. Vol. 462, pp. 290-314, 2018
- "Detecting Discussion Communities on Vaccination in Twitter". Gema Bello-Orgaz, Julio Cesar Hernández-Castro, David Camacho. Future Generation Computer Systems, Vol. 66, pp. 125-136, 2017.
- "ACO-based clustering for Ego Network analysis". Antonio Gonzalez-Pardo, Jason J. Jung, David Camacho. Future Generation Computer Systems, Vol. 66, pp. 160-170, 2017.
- "Medoid-based clustering using ant colony optimization". Hector D. Menéndez, Fernando E. B. Otero, and David Camacho. Swarm Intelligence, Vol. 10, nº 2, pp. 1-23, May 2016. DOI: 10.1007/s11721-016-0122-5
- "Combining Social-based Data Mining Techniques to Extract Collective Knowledge from Twitter". Gema Bello-Orgaz, Hector D. Menedez, Shintaro Okazaki, David Camacho. Malaysian Journal of Computer Science. Vol. 27, Issue 2, pp. 95-111, 2014.

Publications

- "Measuring the Radicalisation Risk in Social Networks". Raul Lara-Cabrera, Antonio González-Pardo, Karim Benouaret Noura Faci, Djamal Benslimane, David Camacho. IEEE Access. Vol. 5, pp. 10892-10900, 2017.
- "Statistical Analysis of Risk Assessment Factors and Metrics to Evaluate Radicalisation in Twitter". Raúl Lara-Cabrera, Antonio Gonzalez-Pardo, David Camacho. Future Generation of Computer Systems - FGCS. November 2017. DOI: 10.1016/j.future.2017.10.046
- "Social networks data analysis with semantics: application to the radicalization problem". M. Barhamgi, A. Masmoudi, R. Lara-Cabrera, D. Camacho. Journal of Ambient Intelligence and Humanized Computing. Online, October 2018. DOI: 10.1007/s12652-018-0968-z
- "A new algorithm for communities detection in social networks with node attributes". H. Gmati, A. Mouakher, A. González-Pardo, David Camacho, D Camacho. Journal of Ambient Intelligence and Humanized Computing. Online, October 2018. DOI: 10.1007/s12652-018-1108-5

Do you have any questions? Thank you for your attention

Bio-inspired Community Finding in Social Networks, new trends and challenges

DAVID CAMACHO

David.Camacho@uam.es

Computer Science Department

Autonomous University of Madrid

Applied Intelligence & Data Analysis <u>http://aida.ii.uam.es</u> Universidad Autónoma de Madrid