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Problem

Consider
min g(x)

where x = (x1, . . . , xn) ∈ D ⊂ Rn and g is continuous of x .

I g -function evaluation=computer/physical experiments.

I g is black-box and its evaluation is extremely expensive.

I The computational budget could be very limited, say, at most
200 g -function evaluations.
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Task

To find a reasonably good solution to

min g(x)

with a small number of function evaluations?

I Black-box ⇒ no math formulation: Impossible to use a simple
math function to approximate it. Traditional math
programming methods do not work.

I Expensive function evaluation ⇒ Traditional heuristics
(evolutionary methods) do not work, either.
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Surrogate Model (Response Surface) Method

I Step 0 Initialization: Carefully select a small number of
points from the x-space and evaluate their g -function values.

I Step 1 Modeling: Based on All the evaluated g -function
values, build a surrogate model of g .

I Step 2 Locating new test points: Based on the surrogate
model, predict the most promising new points.

I Step 3 Function evaluation: Evaluate these new test points.
If the stopping condition is not met, go to Step 1. Otherwise,
output the best point found so far.

Surrogate Models: Neural Networks, Radial basis function,
Gaussian Process (GP) Model....
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Gaussian Process (GP) Modeling

Assumption:

To build a cheap surrogate model for y = g(x), x ∈ Rn, assumes

I For any x , g(x) is a sample of

µ+ ε(x) (1)

where ε(x) ∼ N(0, σ2), µ and σ are independent of x .

I For x , x ′ ∈ Rn, c(x , x ′), the correlation btw ε(x) and ε(x ′):

c(x , x ′) = exp[−d(x , x ′)], (2)

where d(x , x ′) =
∑n

i=1 θi |xi − x ′i |pi . θi > 0 and 1 ≤ pi ≤ 2.

θi > 0 and 1 ≤ pi ≤ 2.
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c(x , x ′)↗ 1 as d(x , x ′)↘ 0.

implies g(x ′)→ g(x) as d(x , x ′)↘ 0. It means that g(x) is
continuous.

Two things to do:

Parameter estimation of θ1, . . . , θn, p1, . . . , pn, µ and σ. (2n + 2
parameters).

Building posterior predictive models for predicting g(x) at
untested x.
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Parameter Estimation

I Given K points x1, . . . , xK ∈ Rn and their g -function values
y1, . . . , yK ,

I the parameters µ, σ, θ1, . . . , θn, and p1, . . . , pn can be
estimated by maximizing the likelihood that g(x) = y i at
x = x i (i = 1, . . . ,K ):

1

(2πσ2)K/2
√
det(C )

exp

[
−(y − µ1)TC−1(y − µ1)

2σ2

]
(3)

where C is a K × K matrix whose (i , j)-element is c(x i , x j),
y = (y1, . . . , yK )T and 1 is a K -D column vector of ones.

Remarks:

I θ1, . . . , θn, and p1, . . . , pn are in c(x i , x j),

I maximization of (3) is not costly, it involves determinants and
inverse.
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GP Predictive Distribution
Given hyper parameters θi , pi , µ and σ2. Under the condition
g(x i ) = y i for i = 1, . . . ,K , for any x ∈ Rn, the conditional
probability of g(x) is:

N(ŷ(x), s2(x))

where
ŷ(x) = µ+ rTC−1(y − 1µ) (4)

s2(x) = σ2[1− rTC−1r +
(1− 1TC−1r)2

1TC−1r
] (5)

where r = (c(x , x1), . . . , c(x , xK ))T .

I different untested points have different predict models.

I s2(x) measures the uncertainty.
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Example: (D. Jones et al 1998)
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(D. Jones 2001)

Figure 1. (a) Contours of the Branin test function. (b) Contours of a kriging surface fit to 21

points (shown as spheres).
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How to build a GP predictive model

I Assume that y = g(x) is a sample of a GP model

I Suppose K points x1, . . . , xK ∈ Rn and their g -function
values y1, . . . , yK are given.

I Using the maximum likelihood estimation, estimate hyper
parameters.

I Compute the conditional probability N(ŷ(x), s2(x)) for g(x)
at untested point x .
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Q: Suppose we have evaluated g -function value at x1, . . . , xK and
the smallest function value among these K points is gmin. which
point(s) should be evaluated next?

A: (D. Jones et al 1998) the point maximizing a utility function
such as

E [I (x)] = E [max{gmin − g(x), 0}] expected improvement,

and

P(g(x) < gmin) = Φ(
gmin − ŷ(x)

ŝ(x)
) prob. of improvement.

Methods using these utility functions are called Efficient Global
Optimization (EGO).
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The major computational cost:
function evaluation + modeling (i.e., estimation of parameters) +
maximization of EI (or PI).

When K > 300, the overhead of model building is too high. This
method is impractical.
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Clustering for large data set

I Commonly-used strategies for dealing with large K :
I select a limited number of evaluated points.

-: doesn’t make the full use of all the evaluated points
I do crisp clustering

-: The prediction quality is poor in boundary areas.
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Fuzzy-Clustering for a large data set

I Two parameters:
I L: the number of points for building a local model.
I c : the number of clusters.

I K evaluated points are clustered by the Fuzzy C-Means
Clustering into c clusters with cluster centers v1, . . . , v c .

I Pi is set to the set containing the L evaluated points with the
highest membership degrees to cluster i .

I Using the data points in Pi , build GP model i .
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Modelling Using Fuzzy-Clustering

I Closest Prediction: If vk is the closest cluster center to x ,
then use GP model k for modeling g(x):

N(ŷ(x)k , s
2(x)k)

I Combination of Different Models: This approach combines
the predictions from all the local models:

N(ŷ(x), s2(x))

where

ŷ(x) =
∑
i

pi ŷ(x)i s2(x) =
∑
i

(pi s(x)i )
2

pi is the membership degree of x to cluster i .
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MOEA/D+EGO for Multiobj Expensive
Optimization
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Problem

minimize F (x) = (f1(x), . . . , fm(x))T

subject to x = (x1, . . . , xn)T ∈
∏n

i=1[ai , bi ]
(6)

where

I all the fi are continuous.

I −∞ < ai < bi < +∞.

I m is small, m = 2 or 3.

I Function evaluation is very expensive .

There is no single optimal solution, one must balance different
objs!
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Pareto Optimal Solutions= Best Trade-off Candidates

I y dominates x if y is no
worse than x in any objs,
and y is better than x in
at least one obj.

I x is Pareto optimal iff no
other solution dominates
it.

I Pareto set (PS): all the
Pareto optimal solution in
the x-space.

I Pareto front (PF): the
image of the PS in the
f -space.
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I no decision maker likes non-Pareto optimal solutions.

I a decision maker often want to have a number of well
representative Pareto optimal solutions for making her final
decision.
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Task:

Find a small number (say, 10− 20) of well representative Pareto
optimal solutions by using 100-300 function evaluations for
problems with 2 or 3 objectives and less than 10 variables.

2f

1f

)(DF

Pareto Front (PF)
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How to do EGO in multiobjective Opt

I consider a random aggregation function at each iteration (J.
Knowles, 2006).

I generalize the expected improvement to MOPs (Keane,
Emmerich et al, 2006).

All the above approaches can generate only one test point at each
iteration.
Our Goal:

I to generate several new test points at each iteration for
parallel computing.

Our Approach:

I MOEA/D+EGO
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MOEA/D Principle

I Decomposition: Decompose the task of approximating the PF
into N single objective subproblems. The optimal solutions of
these subproblems form a good approximation to the PF.

I Collaboration: Optimize these subproblems in a collaborative
manner.
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ff,(1z,(1 

Finding a set of N uniformly distributed 

Pareto optimal solutions

)(min 1x,  g

)(min 2x,  g

)(min
N

x,  g

N problemS. 

Not a N-obj opt 

problem!
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Decomposition

Weighted Sum Approach

minimize gws(x , λ) =
m∑
i=1

λi fi (x)

where λ = (λ1, . . . , λm) be a weight vector, i. e.,
∑m

i=1 λi = 1 and
all the λi ≥ 0.

I If the PF is convex, then for any Pareto optimal solution x∗,
there exists a weight vector such that x∗ is the optimal
solution to the above problem.

I This approach does not work for nonconvex PFs.
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Techbycheff Approach

minimize g te(x , λ) = max
1≤i≤m

{λi (fi (x)− z∗i )}

where z∗ = (z∗1 , . . . , z
∗
m) is a reference point, i. e. z∗i < min fi .

I for each Pareto optimal point x∗ there exists a weight vector
λ such that x∗ is the optimal solution of the above problem.

I This approach can deal with nonconvex PFs
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Ideas

I These subproblems are related with each other.

I subproblems with similar weight vectors have similar solutions.

I neighborhood relationships among all the subproblems can be
defined.

I Explore these neighborhood relationships and solve these
subproblems in a single run.
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MOEA/D+EGO

Step 1 Initialization: Carefully generate a small number of
points and evaluate them.

Step 2 Models Building: By using the evaluated function
values, build a predictive model for each objective
g(x |λi ) and then use it to define ξi (x), a metric
measuring the merit of evaluating point x for
optimizing g(x |λi ).

Step 3 Locating Candidate Points: Using MOEA/D,
obtain x̃1, . . . , x̃N , where x̃ i is an approximate
solution for maximizing ξi (x).

Step 4 Selecting Points for Function Evaluation: Select
KE points from x̃1, . . . , x̃N using a selection scheme.

Step 5 Function Evaluations: Evaluate the F -function
values of all the KE selected points in Step 4, then
go to Step 2. 30 / 50
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Model building in MOEA/D-EGO

Model building is very costly. How can one reduce the cost?
Solution:

I build predictive model N(ŷi (x), ŝ2i (x)) for each individual obj
function fj by maximum likelihood estimation.

I assume that f1, . . . , fm are independent of each other.

I mathematically induce the predictive models for all the
subproblems.
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In the case of weighted sum approach
Since

gws(x , λ) =
m∑
i=1

λi fi (x),

Its predictive model can be N(ŷws , (ŝws)2) where

ŷws =
m∑
i=1

λi ŷi (x), (ŝws)2 =
m∑
i=1

[λi ŝ
2
i (x)]2.
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In the case of Techbycheff approach
some math tricks are needed. We have discussed about the cases
when m = 2, 3.

The details can be found in the paper.
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Selecting Points for Evaluations in MOEA/D-EGO

We have the following the considerations:

I The selected points should be as different as possible from
those points already evaluated.

I The selected points should not be too close to each other.

I The selected points should have higher EI (PI)-values.

The details of the method can be found in the paper.
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Experimental Settings

I Test problems, 2 objectives with 8 variables, 3 objectives with
6 variables.

I the number of function evaluations=200 for bi-obj problems,
300 for 3 obj problem.

I (11n − 1) initial test points are generated by Latin hypercube
sampling method.

I at each generation, 5 points are selected for evaluation.

I Techebycheff approach are used.

I the number of subproblems=300 for two objs, 595 for three
objs.
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Results
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Why some are poor?

One reason might be that these functions cannot be modeled by
Gaussian process model, i.e. don’t meet the assumption in
modeling.

38 / 50



GP Modelling for Single Obj Expensive Opt and Fuzzy Clustering
MOEA/D+EGO for Multiobj Expensive Optimization

Use of Gradients and Dropout NN in MOEA/D for Expensive Multiobjective Optimization
Conclusion

Use of Gradients and Dropout NN in MOEA/D
for Expensive Multiobjective Optimization
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Motivation

I GP modelling does not scale well. It is difficult to handle more
than 20 variables, and a large data set with more than 1,000
points.

I In some real-life expensive optimization problems, gradients
are available.

Goal: Design scalable MOEA/D which be able to use gradients.
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Bayesian Neural Network with Monte Carlo Dropout

ŷdropout = h(xZ1W̄1 + b1)Z1W̄2 + b2

Z1 = diag(z1),Z2 = diag(z2)

W̄i is the fixed weight matrix.
zik ∼ Bernoulli(p) is the dropout
mask.

I y = f (x , z)

I y is a random variable as
well.
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Bayesian Neural Network with Monte Carlo Dropout

Randomly drop the nodes:

I fast on training/prediction.

I provide practical distribution estimation.
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Bayesian Neural Network with Monte Carlo Dropout1

Prediction:

E(ŷ) =
1

S

S∑
s=1

ŷs(x), (7)

Var(ŷ) =
1

S

S∑
s=1

[ŷs(x)− E(ŷ)]2. (8)

1Gal, Yarin, and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. ICML 2016.
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Using Gradient Information: Sobolev Training2

L = Le + Lg

=
N∑
i=1

l(f̂ (xi |W ), f (xi )) +
N∑
i=1

l(∇f̂ (xi |W ),∇f (xi ))

=
N∑
i=1

[f̂ (xi |W )− f (xi )]2 +
N∑
i=1

[(∇f̂ (xi |W )− f (xi ))]2 (9)

I Le : Error Loss

I Lg : Gradient Loss

2Czarnecki, Wojciech M., et al, Sobolev training for neural networks,
NeurIPS 2017
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Dropout NN with Gradient Information

Figure: The predictive mean (solid line) ± two standard deviations
(shade area) obtained by dropout NN with and without gradient
information for sin(x).

45 / 50



GP Modelling for Single Obj Expensive Opt and Fuzzy Clustering
MOEA/D+EGO for Multiobj Expensive Optimization

Use of Gradients and Dropout NN in MOEA/D for Expensive Multiobjective Optimization
Conclusion

Training Time

0 200 400 600 800 1000
Number of Training Samples

0

1000

2000

3000

4000

5000

Ru
ni

ng
 T

im
es

 (i
n 

se
co

nd
s)

Gaussian Process
Gaussian Process with Gradient
Neural Network
Neural Network with Gradient

Figure: The training time of GP models and Dropout NN with and
without gradients

46 / 50



GP Modelling for Single Obj Expensive Opt and Fuzzy Clustering
MOEA/D+EGO for Multiobj Expensive Optimization

Use of Gradients and Dropout NN in MOEA/D for Expensive Multiobjective Optimization
Conclusion

Preliminary Experimental Results
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Figure: Evolutions of the median IGD values obtained by different
algorithms on problems with 50 decision variables and 1000 function
evaluations.
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I In expensive optimization. all the info obtained in the previous
search should be used for determining the next test point.

I Fuzzy clustering can be used for improving scalability of GP
modelling.

I MOEA/D+EGO works for small scale expensive optimization
optimization.

I MOEA/D+Dropout NN can use gradient info and handle
large scale problems. It is promising.

I A DM only needs one final solution, it is worthwhile studying
how to do interaction with the DM to reduce the
comoputational cost.
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