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Why is this important?

* Because Al has been really successful at dealing with medium scale problems

* But now we’re victims of our own success,
So we’re increasingly trying to optimize problems that are at or beyond memory/compute capacity
so hybridization with mathematical solvers falls over*

* HyperGraph Partitioning is about splitting up huge problems, into balanced, minimally connected,
sub units, that are computationally tractable
* It complements approaches to large-scale optimization
like Divide-and-Conguer, cooperative coevolution, ...

* Example application areas:
* Economics: e.g. statistics for GDP, employment & trade,
* Manufacturing: e.g. VLSI design,
* Communications: adaptive network (re) configuration

* Scientific computing in general.

*e.g., Smith, et al . Genetic Approach to Statistical Dis

isclosure Control. | TEC, 16(3):431-441, 2012.
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What's a hyper graph?

Simple example: statistical data
This just has 2 dimensions, with one level of

hierarchy in each

Quickly becomes complex once you extend to
multiple dimensions
UK Business Employment statistics has:
7 dimensions,
up to 6 levels of hierarchy
~108 cells, 10°-10° hyperedges

This example has integers in the vertices,
Circuit diagrams have Booleans

A generalization of a graph, where
a hyperedge joins several vertices

18-34 35-54 55+ All Gender
! | ‘ | :‘ | Women
\ ‘ ‘ _ Men

: | All

Hyperedge

Papa & Markov (2007) DOI: 10.1201/9781420010749.ch61
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Hypergraph Partitioning

* |s about dividing the vertices into k
approximately equal sets

* SO as to minimize the number of
cut hyperedges

e The combination of these
constraints makes it NP-Hard
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Cutsize =2
Imbalance 7%

( V3.

‘ Cutsize 1

Imbalance 7%

Cutsize=0
Imbalance 43%

Image from https://tex.stackexchange.com/questions/1175/drawing-a-hypergraph
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* |f the original problems
are too big to solve
directly, so is the HGP!

* Classic Hypothesis: a good
partitioning at one level is
a good starting point for
partitioning at the next.

* KaHyPar is currently s-o-t-
a, and is open source

||.1|-t|al-
partitioning

This image from : Network Flow-Based Refinement for
Multilevel Hypergraph Partitioning. Heuer et al. SEA’18 .
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Phase 1: understanding the problem

Algorithm 2: Memetic EA(x + ) initial partitioner

1 .
1 = 57 M= [+65> 16> &> 5,71, 1, 21, 51, 1072, 10072]
2 initialise parent population: P = {a1 ...a.}

W

while evaluation budget not exhausted do
/* create offspring population =*

* Apply EAs & EDAs to do initial
for : = 1 rto A\ do

L ,
pa rt|t|0n|ng 5 parent p1 = RandomSelection(P)
Build on , don’t replicate other s parent Lz - ftandomSelection(?)

7

8

] offspring a; = p1
people’s research effort in HGP or

if rand() < X then

A . 9 perform uniform crossover with normalised p
EAs for Graph Part|t|0n|ng 10 if p1.fitness < p2.fitness then =
11 |  ai.mut = pa.mut
e, o . d
* Initial Hypotheses: - end
. 14 if rand() < A then
(1) We can eXp|O|t the Symmetry 15 |  ai.mut = RandomSelection(AM)
T JRC 16 end
Of the prOblem Wlthln 17 for each hypernode in a; do
Estimation of Distribution 18 it drand() < ai.mmut then .
. 19 | assign hypernode to a random partition
Algorithms. 20 end
) ) 21 end
(2) We can exp|0|t self-ada pt|Ve 22 repair partition if necessary
. .. . 23 apply FM local search (IC
mutation and use existing refiners 24 evaluate a; m'\|
ey L - . . 25 end
Wlthln d Memetlc Algorlthm /* select next parental population =*/
26 P = p fittest from P + A\
27 end
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Phase 1: Initial Results

* Test set: 10 each from IBM VLSI circuits, U. Florida sparse matrices, 2014
SAT comp.

* Benchmark: against existing portfolio of 10 local search/ breadth-first
methods with an even allocation of trials

 Standard KaHypar parameters extensively tuned by authors for
bipartitioning,

* EA (global search) or EDA doesn’t always do better that portfolio approach —
overall not SSD on initial or final cut-size:

Why?
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Phase 2: Understanding the problem landscapes

* KaHyPar coarsens until a threshold node limit is reached t,*k
* Typically in KaHyPar and other methods t,=150, so ~300 nodes
* This makes the problem tractable for Breadth-first search etc.,

* We selected a ‘training set’ of 4 of each type of hypergraph then,
e used KaHyPar to generate 10,000 local optima for hypergraphs
* having stopped coarsening at t=150 and t=15000

* measured distance of each solution to closest (estimated) local optimum,
and relative solution quality
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Results, meanings, implications for design choices

1. On some landscapes coarsening stopped prematurely around 40k nodes
Algorithms should be able to cope with large search spaces

2. FM local search very effective, no correlation between cut-sizes
before/after improvement, FDC low for t=150 %
Lack of global structure: ‘good’ basins of attractions don’t have ‘good’ edges
Algorithms should incorporate local search

3. Lots of distinct local optima: ~0 duplicates found, wide range of costs
Worth devoting computational effort to good starting points for search

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 10
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Results, meanings, implications for design choices

4. Positive Fitness-Distance Correlation on all landscapes
Global optimum likely to be near other good local optima (‘big valley’)
Suggests a role for population-based search with recombination
This effect was *much™ more noticeable at t=15000,
Suggesting great role for EAs on these landscapes where there is less information loss

5. Big ‘gaps’ observed between best solution found and next
Taken with lack of duplicates, suggests that there are barriers around the good solutions
Lots of ‘next-best” — concentric structure?
(i) infeasibility of nearby solutions? ( optima are likely to near ‘balance’ constraints),
(ii) Large valley of attraction for 2"d best?

Recombination and/or self-adaptation** to change role of mutation as search
progresses

**Parameter Perturbation Mechanisms in Binary Coded GAs with Self-Adaptive Mutation. In Foundations of Genetic Algorithms 7,

pp. 329-346, Morgan Kaufmann, San Francisco, 2003.
Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 11
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Verifying the design choices on the training set: Seeding

reuters, t=15000, EA(100+1000)

ibm18, t=15000, EA(100+1000)

4000 3300
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. 3500 -\ SRS SR S - faa EAs=1 3260 g g
e Seed with best pof s* | s | e Eac10 1791 A SR N S S S S 1
o < EA: 5=100 . ‘ ;
CaIIS to POOI 8 3000 — EA:s=200H 8 ;;zg e—e Pool
= : — 4 EA:s=0
* t=15000 g *g 3180 e EAs-1
. 2140 *— EA:s=100
EA quickly discovers 2000 e , ey B0
foralls
350 stanford, t=15000, EA(100+1000) 200 usroads, t=15000, EA(100+1000)
: : : : Pool : : : . [e—e Pool
s=0 too bad to fit on plot EA: 5 =0 L O e S — EAs=0
0 300 EA:s=1 v —u EA:s=1
S=1 no better than Pool, Y EA: s=10 N 1601} EA:s—10 |
o EA: s=100 & EA: s=100
$=100,200 SSD to others — 3 250 EA: 5=200 | 3 140 F N EA: =200 |
but not each other E ' Z ol \ e ——
C C
= 200 =
100 Skt
150 ; ; ; ; ; 80 ; ; ; ; ;
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 6000C

Evaluations Evaluations
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Veritying the design choices on the training set:
other EA parameters:

* Results confirmed our design choices for population management and
variation operators were robust

* (But we’re not saying th ey couldn’t be improved by a 2"4/3"d gen MA)

* EDA-based approaches failed
- Univariate approaches gave poor results

- Attempts to learn even simple pairwise models timed-out
using different versions of Pelikan’s BOA

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 13
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Recap so far

* Analysed existing approaches & identified initial partitioning as potentially fruitful area to
apply insights from meta-heuristic search

* EA didn’t provide expected gains over simple Pool algorithm at default thresholds
* Could have stopped there and published this as a negative result, instead

* Used landscape analysis to:
* Understand the nature of the problem in general
* Identify potential role for EA at less coarsened levels, when quality is most important
* Make informed design decisions

* Verified design decisions using training set at t=15000:
* Note high proportion of computational budget needed for seeding

But this is still at arbitrary threshold,
that takes no account of instance characteristics!

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 14
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Phase 3: Finding optimal thresholds

» Selected training set of 12 HGs — 4 from each category

* Ran tests using EA and Pool with a number of different thresholds Representative HG
: — Initial cutsize
3500 . . ibm18 . . . . .
: : : : — Final cutsize
3000 | T T ;
N m k As you start to coarsen, the
& 2200 BN AR R i performance of the initial
< ; | . ; partitioning gets better and
2000 \\‘( """" B P - so does the final partitioning
1500 el o

@) 5000 10000 15000 20000 25000 30000

Coarsenirig threshold (#)

Eventually the initial partitioning starts to get

At a final stage (t<3500) worse because the space becomes increasingly
the FM can’t save you complex and more rugged. Sophisticated
and even the final uncoarsening retrieves similar final partitions

partitioning gets worse
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Phase 3: Effect of optimal thresholds on cut sizes

TABLE I
) ) THE SMALLEST (AVERAGE) EA AND POOL FINAL CUT-SIZES ON FOUR
* Over all coa rsening thresholds (AUC metrlc): HYPERGRAPHS FROM EACH OF THE BENCHMARK SETS AND THE RELATED
EA significantly outperforms the Pool COARSENING THRESHOLDS. CUT-SIZE HIGHLIGHTED IN BOLD FACE
- WHERE IT IS SIGNIFICANTLY DIFFERENT, p < 0.05.
algorithm.
Hypergraph t;ool t*EA CUt};ool CUt*EA tZZTZTee*PEAl
* Case-by-case: for all 12 hypergraphs ibm15 1000 3250 2649 | 2632 2.69
o ibm16 3250 25000 1762 | 1720 3.15
EA final cut-sizes at t* are significantly ibm17 15000 15000 2276 | 2244 0.74
i ibm18 3000 3250 1612 1564 0.57
smaller than the Pool algorithm at the irfoil 2d 15000 13000 s 31 0ee
default t=150. Reuters911 5000 10000 3199 | 3125 0.60
Stanford 500 250 30 29 0.40
usroads 750 2250 80 79 1.87
aaailO-planning 5000 5000 2312 2261 0.65
e Across the 12: best-case cutsizes at t* for gss-20-s100 1250 30000 1002 944 9.67
each alg.- instance combination: MD5-28-2 00 10000 3580 | 3483 041
slp-synthesis 2500 4500 2618 2549 0.96
EA results are significantly better than the

Pool algorithm (p < 0.05).
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Phase 4: So how do we know where to stop?

* Based on the changing hypergraph characteristics not preset value
* Plotted changing number of pins (and other measures) during coarsening
e common pattern of ‘knee points’ as final and initial cutsize also deteriorated

r0 bm18 _955-20-5100 , 250.0
3000 Yo > G R R 1 o
¢ L — s .
D 2500 |- T T [T o : : : : :
5 1--- Pool initial |-~ e T 1
; ; : . ; |- Pool final [/ —u e e S i
2000 [/ oeerirree e RS R SRR ' : : f f :
; ' ; § |- EA final - _ R
1500 l l 1 l l I L L L L L 0.
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Coarsening threshold (t) 17

Coarsening threshold (¢)
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Why do these occur?

* We hypothesize that change in performance is a result of information loss
* Leading to more complex, rugged, unstructured landscapes for initial partitioning
* And a loss of the relationship between quality of initial and final cutsizes

* We further hypothesize that the change in the reduction of pin count is (just
one possible) proxy for this loss of information
* Tends to decrease linearly to start with
* Then there’s a step-change as coarsening merges ‘super-nodes’
* which account for a lot of nodes,
* and for a lot of differences between edges



Adaptive Stopping rule

1. Take last windowSize values of
pin_count

2. Perform Least Squares estimate of
best-fit line

3. Calculate R?

4. 1F (R2<R?_,.) OR (t<t,.):
Stop and do initial partitioning

5. Else:
Do stride uncoarsening steps
Goto step 1

Tuned params via grid search over
results from phase 3

UWE

Bristol

R2 >R,

continue

R2 >R,
R2 <Rt continue
STOP
Initial
Partition
Here

Simple linear regression over sliding window as it is coarsened
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Benchmarking Adaptive Stopping MA

focusing on ‘mean final cut size’ — the proof of the pudding!

1. SSD Reductions in initial cut-size transfer to final cut size vs EA at t=150

* Across all 30 hypergraphs: Mean reduction of 1.6% (p < 0.05) vs. t=150;
Best cut size reductions over 20%

e Case-by-case: Mean final cut-size is smaller on 22 /30, SSD on 12/22 (p<0.05)
Similar improvements vs. Pool at t=150.

2. The stopping rule parameters generalise
* Across the 18 test hypergraphs: Overall reduction of 1.8% (p <0.05) vs. EA at t=150.

* Case by case: Mean final cut-size is smaller on 13 of the 18 hypergraphs.
Cut sizes not SSD vs. t=15000,
But the average wall-clock time was = 7.4x faster. Vs t=15000

3. Total partitioning time: much faster (10X) at t=150 — but with larger cut size

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 20
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Conclusions

* We have established a role for EA-based initial partitioning when solution
qguality is paramount

* Complementing, other people’s work
* Evidence-based identification of role and design choices

* We have developed a new adaptive mechanism to stop coarsening
based on the rate of change of information content

* This is a proof of concept - we're not claiming ours is the best MA for HGP
- or that better rules don’t exist

but we did beat the state of the art, sometimes by 20%
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Future work

1. Lots of benchmarking and machine learning to determine:
* More sophisticated adaptive stopping rules

 Whether we can characterise Hypergraphs into different classes according
measurements such as distributions of vertex degree, hyperedge size.

2. Improve the integration with the KaHyPar framework
* reduce runtime
* Look at other other niches for MAs and algorithm selection mechanisms

3. Apply to improve existing techniques at UK Office for National Statistics
e Because the UK is really going to need accurate up-to-date information
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Tuning / robustness of stopping rule

Grid search over 12 hypergraphs in training set for which we had data from exhaustive
search

* Size of the sliding window
* Stride of sliding window
* Critical value for RA2

looking for the set of values which predict the minima of the black line (final partition cost)
* window_size = 100, window_stride = 50,

* R?%itica = 0.99, t,;,= 150 (default)
* these may be be algorithm, and (of course) model, dependent
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