
Evolutionary n-level Hypergraph
Partitioning with Adaptive Coarsening

“a tale of finding where EAs can contribute”
based on paper of same name, IEEE TEC 2019

Jim Smith and Richard Preen
Dept. Computer Science and Creative Technologies

University of the West of England

Why is this important?
• Because AI has been really successful at dealing with medium scale problems

• But now we’re victims of our own success,

So we’re increasingly trying to optimize problems that are at or beyond memory/compute capacity

so hybridization with mathematical solvers falls over*

• HyperGraph Partitioning is about splitting up huge problems, into balanced, minimally connected,

sub units, that are computationally tractable

• It complements approaches to large-scale optimization

like Divide-and-Conquer, cooperative coevolution, …

• Example application areas:

• Economics: e.g. statistics for GDP, employment & trade,

• Manufacturing: e.g. VLSI design,

• Communications: adaptive network (re) configuration

• Scientific computing in general.

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

2

2
*e.g., Smith, et al . Genetic Approach to Statistical Disclosure Control. IEEE TEC, 16(3):431–441, 2012.

What’s a hyper graph? A generalization of a graph, where
a hyperedge joins several vertices

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

18-34 35-54 55+ All Gender
67 55 39 51 Women
64 44 35 45 Men
a b c 48 All

Vertex Hyperedge

Simple example: statistical data
This just has 2 dimensions, with one level of
hierarchy in each

Quickly becomes complex once you extend to
multiple dimensions

UK Business Employment statistics has:
7 dimensions,
up to 6 levels of hierarchy
~108 cells, 105-106 hyperedges

This example has integers in the vertices,
Circuit diagrams have Booleans

Papa & Markov (2007) DOI: 10.1201/9781420010749.ch61

3

Hypergraph Partitioning

• Is about dividing the vertices into k
approximately equal sets

• So as to minimize the number of
cut hyperedges

• The combination of these
constraints makes it NP-Hard

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019
Image from https://tex.stackexchange.com/questions/1175/drawing-a-hypergraph

Cutsize=0
Imbalance 43%

Cutsize = 2
Imbalance 7%

Cutsize 1
Imbalance 7%

4

State of the art: Multi-level approaches

• If the original problems
are too big to solve
directly, so is the HGP!
• Classic Hypothesis: a good

partitioning at one level is
a good starting point for
partitioning at the next.
• KaHyPar is currently s-o-t-

a, and is open source

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019
This image from : Network Flow-Based Refinement for
Multilevel Hypergraph Partitioning. Heuer et al. SEA’18 . 5

Phase 1: understanding the problem

• Apply EAs & EDAs to do initial
partitioning

Build on , don’t replicate other
people’s research effort in HGP or
EAs for Graph Partitioning

• Initial Hypotheses:
(1) We can exploit the symmetry

of the problem within
Estimation of Distribution
Algorithms.

(2) We can exploit self-adaptive
mutation and use existing refiners
within a Memetic Algorithm

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXXXX 201X

Algorithm 2: Memetic EA(µ+ �) initial partitioner
1 n = 1

|V | ; M = [n
100 ,

n
10 ,

n
5 ,

n
2 , n, n, 2n, 5n, 10n, 100n]

2 initialise parent population: P = {a1 . . . aµ}
3 while evaluation budget not exhausted do

/* create offspring population */
4 for i = 1 to � do
5 parent p1 = RandomSelection(P)
6 parent p2 = RandomSelection(P)
7 offspring ai = p1

8 if rand() < X then
9 perform uniform crossover with normalised p2

10 if p1.fitness < p2.fitness then
11 ai.mut = p2.mut

12 end
13 end
14 if rand() < A then
15 ai.mut = RandomSelection(M)
16 end
17 for each hypernode in ai do
18 if drand() < ai.mut then
19 assign hypernode to a random partition
20 end
21 end
22 repair partition if necessary
23 apply FM local search (Lamarkian)
24 evaluate ai

25 end
/* select next parental population */

26 P = µ fittest from P + �

27 end

For each run, we recorded two values: the initial cut-size as
the value found by a search algorithm operating at the coarsest
level, and the final cut-size as the value at the original level,
i.e., after uncoarsening has taken place. Since these values will
depend on the coarsening threshold t and choice of algorithm,
we denote these as cuttalg. In some cases below we also report
the best-case cut-size: cut⇤alg, the value observed at whichever
coarsening threshold gave the best results for a given dataset.

To measure the performance of different algorithms across
the full range of thresholds, we also present the area under
the curve (AUC) results, estimated from the experiments at
individual thresholds using a composite Simpson’s rule. When
comparing methods on a single problem, we use the Wilcoxon
ranked-sums test, with the null hypothesis that all observed
results come from the same distribution.

To draw any firm overall conclusions about the performance
of the two approaches, we follow the recommendations in [53]
for comparing algorithms over multiple data sets. First, we ex-
amine the results to ensure that for each algorithm-hypergraph
combination the arithmetic mean is a reliable estimate of
performance, i.e., that the distribution of observations from the
20 runs is unimodal with low standard deviation. This results
in a pair of values (one per algorithm) for each hypergraph,
to which the Wilcoxon signed ranks test can be applied with
the null hypothesis that taken across all hypergraphs there is
no difference in performance.

Finally, run-times are recorded as total-wall-clock time for
the whole process because the time taken in each phase is
heavily linked to the results of the previous stage.

IV. LANDSCAPE ANALYSIS AT DIFFERENT LEVELS

One of the tenets of the multilevel approach to solving HGP
is that the sheer size of the search space makes it impractical
to solve at the original, uncoarsened level, and that therefore
it is better to conduct the search for a good initial partitioning
within a much smaller space. It has also been suggested that
the graph-partitioning counterparts become easier to search as
the level of coarsening increases [35]. Nevertheless, there is
clearly a trade-off. It is inevitable that the coarsening process
reduces the information content, so the mapping between qual-
ity of initial and final cuts becomes more noisy—especially
given the greedy uncoarsening process.

To investigate the nature of the search spaces at different
levels of coarsening, we used KaHyPar to generate 10000
random starting points, apply FM to each and stored these
local optima. For each problem we then identified the (usually
singleton) set of ‘quasi-global’ optima. For each local optima,
we measured its Hamming distance (and that of its inverse) to
each of the global optima, and recorded the smallest distance
(scaled [0,1]), together with the relative cut-size, i.e., divided
by the landscape’s estimated global minimum. This was done
at t = 150 and t = 15000 for four hypergraphs from each of
ISPD98, SPM, and SAT collections.

Landscapes were examined through a combination of visual
analytics (scatter and kernel-density-estimate, KDE plots) and
a model of the fitness-distance correlation (FDC). The FDC
model is a linear regression of local optima l in the form
cut(li) = m ⇥ distance(li, g). The proportion of observed
variation in relative cut-size that can be described by the model
was recorded, i.e., the co-efficients of determination (R2).

This analysis showed a significant similarity between prob-
lems, with the exception of Stanford where coarsening stops
prematurely. Fig. ?? shows KDE plots for the two thresholds
overlaid with the FDC results for two typical hypergraphs.
Note the y scales were chosen to permit comparison between
different thresholds and so significant numbers of local optima
with high relative cut-sizes are not shown. This is why the
linear regression lines lie above the main cloud of points
visible at t = 150. The results of this analysis, and the
implications for search algorithm design are:

1) On some problems the coarsening process was observed
to stop prematurely, and at different values when re-
peated (e.g., between 34000 and 65000 hypernodes for
Stanford). This suggests that search algorithms should
be designed to cope with large search spaces.

2) The FM process greatly reduced cut-sizes and there was
no correlation between the cut-sizes of solutions before
and after improvement. This suggests a lack of global
structure of the landscape as a whole, i.e., considering
all points rather than just local optima. This indicates
algorithms should incorporate local search.

3) All search landscapes contained large numbers of dis-
tinct local optima. Only a few tens of duplicates were
found; more than one copy of the global optima was
only found in 2 of the 24 runs, and never at t = 15000.
It was common to see cut-sizes an order of magnitude
worse than the quasi-global optimum. This suggests that

Addresses the
‘competing

conventions’ problem

Self-adaptive mutation
for combinatorial

problems

Larmarkian constraint
handling and local

search

6

Phase 1: Initial Results

• Test set: 10 each from IBM VLSI circuits, U. Florida sparse matrices, 2014
SAT comp.

• Benchmark: against existing portfolio of 10 local search/ breadth-first
methods with an even allocation of trials

• Standard KaHypar parameters extensively tuned by authors for
bipartitioning,

• EA (global search) or EDA doesn’t always do better that portfolio approach –
overall not SSD on initial or final cut-size:

Why?

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 7

Phase 2: Understanding the problem landscapes

• KaHyPar coarsens until a threshold node limit is reached t0*k
• Typically in KaHyPar and other methods t0 =150, so ~300 nodes
• This makes the problem tractable for Breadth-first search etc.,
• But what is the impact of the inevitable loss of information?

• We selected a ‘training set’ of 4 of each type of hypergraph then,
• used KaHyPar to generate 10,000 local optima for hypergraphs
• having stopped coarsening at t=150 and t=15000
• measured distance of each solution to closest (estimated) local optimum,

and relative solution quality

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 8

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

PREEN and SMITH: EVOLUTIONARY N-LEVEL HYPERGRAPH PARTITIONING WITH ADAPTIVE COARSENING 5

Fig. 1. The relationship between local optima initial cut-size and Hamming
distance at thresholds t = 150 and t = 15000. Each graph shows a kernel
density plot of the results from 10000 randomly seeded FM local searches
and FDC results. y-axes are scaled to facilitate comparison between thresholds
and so do not show many poor optima for t = 150.

it is worth devoting computational effort to finding good
starting points for the search process.

4) On all landscapes there was a positive FDC, i.e., the
global optimum was likely to be near other good local
optimum. This mirrors previous findings on the related
graph partitioning problem [21], [35]. This suggests
benefits for search algorithms that can exploit this in-
formation such as population-based search with some
form of recombination.

5) This effect was noticeably more present on the large
landscapes (t = 15000). This suggests that there may
be a role for population-based search in partitioning at
less coarse levels than is possible with single-member
search algorithms such as BFS.

6) There was almost always a ‘gap’ between the best solu-
tion found and next best. The lack of duplicates makes it
unlikely the global optima had large basins of attraction.
Given the numbers of ‘good’ local optima found just
beyond this gap, this suggests a concentric structure.
This may be because points “in the gap” are infeasible,
or because the basins of attraction of the good-but-not-
optimal local optima are large. Again this suggests a
role for recombination, but as this has less effect as
populations converge, it also suggests a changing role
for mutation during search. Self-adaptation of mutation
rates has often been shown successful in a wide range
of domains [54] and simple approaches can be shown
theoretically to be capable of overcoming both fitness
and entropic barriers in combinatorial landscapes [55].

V. SENSITIVITY TO EA DESIGN CHOICES

A. Population Seeding
The landscape analysis suggests that for some hypergraphs

there is good reason to devote significant effort to finding
good starting points for search. To examine this hypothesis,
and conversely, whether seeding is detrimental when those
conditions do not apply, we exploit the portfolio of algorithms
in the Pool as a selection of heuristics for quickly finding

approximate solutions. To examine the performance of the
EA (µ = 100,� = 1000) with different amounts of initial
seeding, experiments were run with the EA seeded with µ⇥ s

Pool evaluations: for example, when s = 10, the first 1000
evaluations are generated from the Pool before the EA begins.

In Fig. 3 the cut-sizes of the best solutions discovered
are shown for the ibm18, Reuters911, Stanford, and usroads
hypergraphs at coarsening threshold t = 15000. All results
are averages of 20 runs. On both ibm18 and Reuters911,
the EA quickly identifies better solutions than the Pool al-
gorithm regardless of the seeding strategy, showing that the
evolutionary search is able to effectively follow a gradient
in the fitness landscape. However, on Stanford and usroads,
the EA without seeding (s = 0) performs very poorly, being
an order of magnitude worse than s = 100 after 30000
evaluations. Given that so many local optima are present in
such a fitness landscape, starting with fully random solutions
(s = 0) or only a few good solutions (s = 1, s = 10) can
cause the EA to converge prematurely. Only by starting the
EA at a suitable point in the landscape, here after 10000
Pool evaluations (s = 100), is it able to consistently find very
good solutions regardless of the effectiveness of coarsening.
Further increasing the amount of seeding (s = 200) did not
result in additional improvements. In all following experiments
therefore we use s = 100, i.e., 10000 initial Pool evaluations.

The top-right KDE plot in Fig. ?? suggests a reason for
these observations. The huge majority of local optima lie far
from the global optimum and considering the high-density
contours, there is little or no slope to guide the search towards
the global optimum. Although there is a correlation between
local optima cut-size and distance from the global optimum,
this gradient only emerges when enough seeds have been
considered to sample the lower-density contours of the KDE.

B. Population Size

EA sensitivity to µ and � was explored by repeating the
previous experiments across the spectrum of coarsening levels
on the same 12 hypergraphs. A ratio of 1:10 was employed
as this is a commonly used setting, especially with self-
adaptive mutation [52]. The EA(10+100) was found to produce
significantly worse final cut-sizes than EA(100+1000). How-
ever, EA(50+500) and EA(200+2000) were not significantly
different than EA(100+1000). This shows that the EA is
reasonably robust to these parameters and the use of 100+1000
is justified here for the use of fixed parameters. However, as
shown in Table I, the optimum coarsening threshold t

⇤ differs
for each hypergraph. Therefore, adaptive population sizing
schemes would further optimise wall-clock partitioning time
and have been shown to increase EA performance [?].

C. Variation Operators

Further experimentation on less coarsened hypergraphs
(t = 15000) confirmed results widely reported for graph
partitioning [30] that both the use of uniform crossover and
parental alignment significantly improved performance. This
finding remained consistent even with the use of self-adaptive

Kernel density plots:
• Y-axes chosen to

show patterns, miss
many poor optima
for t=150

• Lines show linear
regression and co-
efficient of
determination

• Note scatter plots
were highly
misleading

9

Results, meanings, implications for design choices

1. On some landscapes coarsening stopped prematurely around 40k nodes
Algorithms should be able to cope with large search spaces

2. FM local search very effective, no correlation between cut-sizes
before/after improvement, FDC low for t=150
Lack of global structure: ‘good’ basins of attractions don’t have ‘good’ edges
Algorithms should incorporate local search

3. Lots of distinct local optima: ~0 duplicates found, wide range of costs
Worth devoting computational effort to good starting points for search

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 10

Results, meanings, implications for design choices
4. Positive Fitness-Distance Correlation on all landscapes

Global optimum likely to be near other good local optima (‘big valley’)
Suggests a role for population-based search with recombination
This effect was *much* more noticeable at t=15000,
Suggesting great role for EAs on these landscapes where there is less information loss

5. Big ‘gaps’ observed between best solution found and next
Taken with lack of duplicates, suggests that there are barriers around the good solutions
Lots of ‘next-best’ – concentric structure?
(i) infeasibility of nearby solutions? (optima are likely to near ‘balance’ constraints),
(ii) Large valley of attraction for 2nd best?
Recombination and/or self-adaptation** to change role of mutation as search
progresses

**Parameter Perturbation Mechanisms in Binary Coded GAs with Self-Adaptive Mutation. In Foundations of Genetic Algorithms 7,
pp. 329–346, Morgan Kaufmann, San Francisco, 2003.

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 11

Verifying the design choices on the training set: Seeding
• μ = 100,λ = 1000
• Seed with best μ of s* μ

calls to Pool
• t=15000

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXXXX 201X

Fig. 2. The affect of population seeding on the ibm18, Reuters911, Stanford, and usroads initial partitioning. Shown are the cut-sizes of the best solutions
discovered by the Pool (circle), and the EA initially seeded with µ ⇥ s number of Pool evaluations; µ = 100, � = 1000. On the Stanford and usroads
hypergraphs the EA without seeding (s = 0) is not observable since the cut-size values exceed the y-axis limit.

mutation. For example, EA(100+1000) with X = 80% pro-
duced initial cut-sizes on average 30% smaller than X = 0%
on ibm18 after 30000 evaluations, p 0.05.

Estimation of distribution algorithms (EDAs) have been
used to generate many state-of-the-art results by replacing
recombination and mutation with a process of building and
then sampling probabilistic graphical models (PGMs) of the
current populations. We adapted Pelikan’s implementations
of the Bayesian optimisation algorithm (BOA) [43] to work
within our seeding regime, and to explicitly exploit the rep-
resentation’s symmetry during model building. With small
t no significant differences in performance were observed.
However, the scalability of the model building process was
an issue with large t. Runs on a MacBook Pro with a 2.8GHz
4-core Intel i7 processor with 16GB RAM were halted after
6 hours stuck in initial model building for both decision tree
and graph-based variants of BOA, even after restricting the
space of PGMs to bivariate models. Simplifying still further
to a univariate model removed the ability to accurately capture
interactions. Runs with s=100 initial seeding produced signif-
icantly larger mean initial cut-sizes after 30000 evaluations
on the 4 hypergraphs in Fig. 3; 2422, 3154, 210, and 128 on
ibm18, Reuters911, Stanford and usroads, respectively.

D. Search at Different Coarsening Levels
The more coarsening performed on a hypergraph before

partitioning, the more information is potentially hidden from
the optimisation algorithm, i.e., it must move larger blocks.
However, the less coarsening performed, the larger the search

space and potentially the worse the optimisation algorithm will
perform. To explore this relationship between algorithm and
coarsening threshold, we examine the results of initial and final
partitioning by the Pool and EA with s=100 seeding across a
spectrum of coarsening levels. For each of the three classes
of hypergraph, we perform experiments across the spectrum
of coarsening thresholds on 4 of the 10 selected benchmark
hypergraphs1. Additionally we ran tests at t = 150 and t =
15000 on all 30 hypergraphs. Results presented are an average
of 20 runs of each algorithm run to 30000 initial partitioning
evaluations at each coarsening threshold; each threshold is
sampled in intervals of 250 for t 5000, and of 5000 above
that. The initial and final cut-sizes can be seen in Fig. ??.

1) Overall Performance: Using the AUC metric to compare
performance across all coarsening thresholds, initial cut sizes
found by the EA were smaller than those found by Pool on
all 12 problems. The same is seen for final cut sizes with
the exception of Stanford, where it should be noted that the
coarsening algorithm produces hypergraphs with |V | � 30000
(200000 pins) even at t = 150.

2) Highly Coarsened Hypergraphs: The nature of the
search landscapes for highly coarsened hypergraphs results
in little difference between the algorithms. No statistically
significant difference between algorithms was observed on any
of the 30 benchmarks for either initial or final cut-sizes.

3) Less Coarsened Hypergraphs: The difference between
algorithms becomes more significant the less coarsening is

1 ibm 15–18; gss-20-s100, aaai, MD5-28-2, and slp from the SAT collec-
tion; and SPMs Airfoil_2d, Reuters911, Stanford, and usroads.

EA quickly discovers
better solutions than pool
for all s

s=0 too bad to fit on plot
S=1 no better than Pool,
S=100,200 SSD to others
but not each other

In future we use s=100
i.e. 10,000 seed evaluations

12

Verifying the design choices on the training set:
other EA parameters:

• Results confirmed our design choices for population management and

variation operators were robust

• (But we’re not saying th ey couldn’t be improved by a 2nd/3rd gen MA)

• EDA-based approaches failed

- Univariate approaches gave poor results

- Attempts to learn even simple pairwise models timed-out

using different versions of Pelikan’s BOA

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 13

Recap so far
• Analysed existing approaches & identified initial partitioning as potentially fruitful area to

apply insights from meta-heuristic search
• EA didn’t provide expected gains over simple Pool algorithm at default thresholds

• Could have stopped there and published this as a negative result, instead
• Used landscape analysis to:

• Understand the nature of the problem in general
• Identify potential role for EA at less coarsened levels, when quality is most important
• Make informed design decisions

• Verified design decisions using training set at t=15000:
• Note high proportion of computational budget needed for seeding

But this is still at arbitrary threshold,
that takes no account of instance characteristics!

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 14

Phase 3: Finding optimal thresholds
• Selected training set of 12 HGs – 4 from each category
• Ran tests using EA and Pool with a number of different thresholds

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

As you start to coarsen, the
performance of the initial
partitioning gets better and
so does the final partitioning

Eventually the initial partitioning starts to get
worse because the space becomes increasingly
complex and more rugged. Sophisticated
uncoarsening retrieves similar final partitions

At a final stage (t<3500)
the FM can’t save you
and even the final
partitioning gets worse

Representative HG
Initial cutsize
Final cutsize

15

Phase 3: Effect of optimal thresholds on cut sizes
• Over all coarsening thresholds (AUC metric):

EA significantly outperforms the Pool
algorithm.

• Case-by-case: for all 12 hypergraphs
EA final cut-sizes at t∗ are significantly
smaller than the Pool algorithm at the
default t=150.

• Across the 12: best-case cutsizes at t* for
each alg.- instance combination:

EA results are significantly better than the
Pool algorithm (p ≤ 0.05).

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXXXX 201X

performed. For example, at t = 15000 the EA mean best initial
cut-sizes are significantly smaller than the Pool on all 10 of
the ISPD98 hypergraphs (Wilcoxon rank-sum test, p 0.05).
Furthermore, these improvements in initial partitioning lead to
smaller final cut-sizes. The mean and median are lower for the
EA than the Pool algorithm on all 10 of the ISPD98 hyper-
graphs; but not significantly different at the 95% confidence
interval on ibm10 and ibm11. On ibm18, the EA mean inital
and final cut-size were 20% and 16% smaller than the Pool.

Similar improvements to initial partitioning are found by the
EA on the SPM hypergraphs. For example, with t = 15000,
the EA mean initial cut-sizes on 8 of the 10 SPM hypergraphs
are significantly smaller than the Pool (Wilcoxon rank-sum
test, p 0.05); no significant difference was observed on
the nasarb and Andrews hypergraphs. Interestingly, despite
the improvement in initial partitioning, this only resulted in
significant differences in final cut-sizes on the Airfoil_2d,
Reuters911, and usroads hypergraphs, where the EA resulted
in improvements to mean final cut-size of 0.7%, 4%, and 15%
respectively. At this t setting, no coarsening is performed on
either the Airfoil_2d or Reuters911 hypergraphs and therefore
the cut-sizes are entirely a result of the memetic EA.

For SAT hypergraphs at t = 15000, both the mean EA initial
and final cut-size is significantly smaller than the Pool on 6
of the hypergraphs (p 0.05), with no significant difference
on the other 4, again showing that the EA performs a more
effective search on larger hypergraphs.

Performing Wilcoxon signed-ranks tests of the initial par-
titionings across all runs on the 10 ISPD98 hypergraphs
confirms that the EA has a significantly lower cut-size than the
Pool at t = 15000 (p 0.05). Moreover, this also translates to
significant improvements in the final partitioning (p 0.05).
Similar results were found when repeating the class tests for
the 10 SPM hypergraphs and the 10 SAT hypergraphs.

4) Optimum Coarsened Hypergraphs: Table I shows the
smallest (average) final cut-sizes discovered by the Pool and
EA across all coarsening thresholds on the 4 hypergraphs
from each benchmark set. This shows that when the optimum
coarsening threshold for each algorithm-problem combination
is known, the smallest final cut-size discovered by the EA is
less than the Pool algorithm on all 4 of the largest ISPD98
hypergraphs. On the SAT hypergraphs, the best EA final cut-
sizes are on average smaller by 5.8% on gss-20, 2.2% on
aaai10, 2.75% on MD5-28-2, and 2.6% on slp-synthesis. These
improvements are statistically significant for all but ibm15 and
Stanford. The improvements were achieved by the EA carrying
out a more effective search at the same or higher coarsening
threshold than the Pool and therefore able to take advantage
of any additional information in the larger initial hypergraph.

Also shown in Table I is the average total EA partitioning
time, time

⇤
EA, relative to that taken by the Pool, time

⇤
Pool.

As can be seen, the EA is faster on 7 of the 12 hypergraphs
despite operating on a similar or larger initial hypergraph.

5) Summary:
• The results for all 30 hypergraphs at the coarsest level

(t=150) do not significantly differ between algorithms.
• However, with larger initial hypergraphs (t=15000), the

EA significantly outperforms the Pool (p 0.05).

TABLE I
THE SMALLEST (AVERAGE) EA AND POOL FINAL CUT-SIZES ON FOUR

HYPERGRAPHS FROM EACH OF THE BENCHMARK SETS AND THE RELATED
COARSENING THRESHOLDS. CUT-SIZE HIGHLIGHTED IN BOLD FACE

WHERE IT IS SIGNIFICANTLY DIFFERENT, p 0.05.

Hypergraph t⇤Pool t⇤EA cut⇤Pool cut⇤EA
time⇤EA
time⇤Pool

ibm15 1000 3250 2649 2632 2.69
ibm16 3250 25000 1762 1720 3.15
ibm17 15000 15000 2276 2244 0.74
ibm18 3000 3250 1612 1564 0.57
Airfoil_2d 15000 15000 312 311 0.66
Reuters911 5000 10000 3199 3125 0.60
Stanford 500 250 30 29 0.40
usroads 750 2250 80 79 1.87
aaai10-planning 5000 5000 2312 2261 0.65
gss-20-s100 1250 30000 1002 944 9.67
MD5-28-2 500 10000 3580 3483 6.41
slp-synthesis 2500 4500 2618 2549 0.96

• Furthermore, the wall-clock time of the Pool algorithm
was significantly higher than the EA’s (p 0.05).

Moreover, results confirm our hypothesis that if initial
partitioning is done on large hypergraphs, the picture changes
dramatically. Taken as a whole, for the 12 instances where the
spectrum of coarsening thresholds was explored:

• the EA significantly outperforms the Pool algorithm over
all coarsening thresholds (AUC metric).

• The final cut-sizes of the EA at t⇤ are significantly smaller
for all 12 hypergraphs than the Pool algorithm at the
default t=150.

• Taking the optimum threshold for each algorithm-
problem combination, and comparing the best-case cut-
sizes across the 12 problems, the EA results are signifi-
cantly better than the Pool algorithm (p 0.05).

VI. ADAPTIVE COARSENING TO IDENTIFY THE EA NICHE

The less coarsening is performed, the more information may
be available to the initial partitioning algorithm to potentially
achieve higher quality partitions. This is particularly evident
in a number of the hypergraphs in Fig. ?? by observing the
final cut-sizes where t < 5000; see, for example, ibm18.
However, for each algorithm there exists a point at which
further increases in the size of the search space result in
declining performance; for example, see the algorithm cut-
sizes on the ibm18 hypergraph where t > 15000 in Fig. ??.
Simply selecting a fixed larger t does not help since the
‘optimal’ threshold is clearly hypergraph-dependent..

From Fig. ?? it can be seen that the sum of the number of
vertices in each hyperedge, |pins|, initially declines relatively
linearly with the number of hypernodes before reaching a point
of exponential decay. This suggests that for each hypergraph
there may exist a tipping point at the balance between maximal
information content and maximal hypergraph compression,
akin to ‘knee-points’ in Pareto fronts. We therefore propose an
adaptive coarsening scheme that halts hypernode contraction
in response to the changing characteristics of the hypergraph.

16

Phase 4: So how do we know where to stop?
• Based on the changing hypergraph characteristics not preset value
• Plotted changing number of pins (and other measures) during coarsening
• common pattern of ‘knee points’ as final and initial cutsize also deteriorated

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

--- Pins
--- Pool initial
--- Pool final
--- EA initial
--- EA final

17

Why do these occur?

• We hypothesize that change in performance is a result of information loss
• Leading to more complex, rugged, unstructured landscapes for initial partitioning
• And a loss of the relationship between quality of initial and final cutsizes

• We further hypothesize that the change in the reduction of pin count is (just
one possible) proxy for this loss of information
• Tends to decrease linearly to start with
• Then there’s a step-change as coarsening merges ‘super-nodes’
• which account for a lot of nodes,
• and for a lot of differences between edges

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 18

Adaptive Stopping rule
1. Take last windowSize values of
pin_count
2. Perform Least Squares estimate of
best-fit line
3. Calculate R2

4. IF (R2 < R2
critical) OR (t < tmin):

Stop and do initial partitioning
5. Else:

Do stride uncoarsening steps
Goto step 1

Tuned params via grid search over
results from phase 3

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019

R2 >Rt

continue
R2 >Rt

continueR2 <Rt
STOP

Initial
Partition

Here

19

Simple linear regression over sliding window as it is coarsened

Benchmarking Adaptive Stopping MA
focusing on ‘mean final cut size’ – the proof of the pudding!

1. SSD Reductions in initial cut-size transfer to final cut size vs EA at t=150
• Across all 30 hypergraphs : Mean reduction of 1.6% (p ≤ 0.05) vs. t=150;

Best cut size reductions over 20%

• Case-by-case: Mean final cut-size is smaller on 22 /30, SSD on 12/22 (p<0.05)
Similar improvements vs. Pool at t=150.

2. The stopping rule parameters generalise
• Across the 18 test hypergraphs: Overall reduction of 1.8% (p ≤ 0.05) vs. EA at t=150.
• Case by case: Mean final cut-size is smaller on 13 of the 18 hypergraphs.

Cut sizes not SSD vs. t=15000,
But the average wall-clock time was ≈ 7.4× faster. Vs t=15000

3. Total partitioning time: much faster (10X) at t=150 – but with larger cut size

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 20

Conclusions

• We have established a role for EA-based initial partitioning when solution
quality is paramount
• Complementing, other people’s work
• Evidence-based identification of role and design choices

• We have developed a new adaptive mechanism to stop coarsening
based on the rate of change of information content

• This is a proof of concept - we’re not claiming ours is the best MA for HGP
- or that better rules don’t exist

but we did beat the state of the art, sometimes by 20%

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 21

Future work
1. Lots of benchmarking and machine learning to determine:
• More sophisticated adaptive stopping rules
• Whether we can characterise Hypergraphs into different classes according

measurements such as distributions of vertex degree, hyperedge size.

2. Improve the integration with the KaHyPar framework
• reduce runtime
• Look at other other niches for MAs and algorithm selection mechanisms

3. Apply to improve existing techniques at UK Office for National Statistics
• Because the UK is really going to need accurate up-to-date information

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 22

Thanks to

• Xin Yao and SUSTech for the invitation and gracious hospitality

• Sebastian Schlag for providing access to KaHyPar and detailed discussions

• Martin Pelikan for making various versions of his BOA code available online

• You for listening

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 23

Tuning / robustness of stopping rule

Grid search over 12 hypergraphs in training set for which we had data from exhaustive
search

• Size of the sliding window
• Stride of sliding window
• Critical value for R^2

looking for the set of values which predict the minima of the black line (final partition cost)
Results:

• window_size = 100, window_stride = 50,
• R2

critical = 0.99, tmin= 150 (default)
• these may be be algorithm, and (of course) model, dependent

Jim Smith: presentation to SAINT Workshop, SUSTech, 2019 26

