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Cooperative Intelligence

Artificial intelligence is the ability to use optimally limited 

resources – including time – to achieve goals in complex 

environments.

Based on the defnition of intelligence by R. Kurzweil. The age of spiritual machines:

When computers exceed human intelligence. Penguin, 2000.

Cooperative Intelligence is Artificial Intelligence embedded in 

a Social Context.
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EC Applications –
Energy Management Optimization



Many Objective Optimization for Building Energy Systems
provided by Dr. Tobias Rodemann, HRI-EU

Application

Optimization of investment into new devices (battery, Photo-Voltaic, heat storage…):

Minimum investment costs, annual costs, CO2 emissions and maximum resilience (emergency

power supply), battery lifetime [10 design parameters, 5 objectives]

Scientific Question and Approach

• Handling of large variations in objective values (101-106) → Desirabilities

• Large number of potential MOEA algorithms (>100) → Performance comparison

• Visualization of solutions and comparison to baseline → Parallel coordinate plot, histograms

Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: A MATLAB Platform for Evolutionary

Multi-Objective Optimization,IEEE Computational Intelligence Magazine, 2017
526/03/2019



Boxplot of 10 well-known MOEAs  (10 runs each)

Identify reasonable values

Always set heat storage volume to max

Comparing best found solutions

Baseline solution
is dominated

IBEA, PICEAg & 
Two_Arch2
performed 
best

Annual cost 
and emissions 
are strongly 
correlated

References:
[1]  T. Rodemann & R. Unger, Smart Company Digital Twin – Supporting Controller Development and Testing Using FMI, Spring Meeting of the Japanese Society for Automotive Engineers, Yokohama, 2018 
[2] T. Rodemann, A Many-Objective Configuration Optimization for Building Energy Management, IEEE WCCI, Rio, 2018
[3] T. Rodemann, A Comparison of Different Many-Objective Optimization Algorithms for Energy System Optimization, EvoAPPS (EvoStar), Leipzig, April  2019 (accepted)

Selection of Results
provided by Dr. Tobias Rodemann, HRI-EU
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Application

• Controlled charging to increase profit of operators of public charging stations

• Increase flexibility provided by customers through dynamic pricing

→ Deadline differentiated pricing

Scientific Question and Approach

• Issue: Dynamic prices might be perceived as unfair with negative 

consequences for the charging station operator

→ Investigated setting: Optimization of price offers considering 

the operator‘s profit and price fairness

• Unfairness: unfairday - Customers with similar arrival times and similar 

energy requirements should get similar price offers (per kWh) 

• Optimization of price offers in each interval w/ evolutionary algorithms
• Approximation of expected profit via Monte Carlo simulation 

since exact preferences of customers not known

• Single-objective optimization via self-developed EA

• Multi-objective optimization via NSGA-II

• Experimental evaluation w/ different variances δP (0-3) in electricity prices

7

S. Limmer, M. Dietrich: Optimization of Dynamic Prices for Electric Vehicle Charging Considering Fairness, IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2304-2311, 2018.

Dynamic Pricing for EV Charging Considering Fairness
provided by Dr. Steffen Limmer, HRI-EU
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Experimental Results

• Results single-objective only w.r.t.
expected profit:

 High unfairness, increasing with
increasing variance in operating costs

• Results single-obj. with constraint
of unfairday = 0:

 High reduction of profit

• Results multi-obj. with choosing solutions
with highest profit from Pareto fronts

 Significantly reduces unfairness
without impact on profit

8

δP = 0 δP = 1 δP = 2 δP = 3

E(daily profit) 
[Euro]

285.51 302.00 329.24 359.03

unfairday 0.916 4.715 6.423 7.572

δP = 0 δP = 1 δP = 2 δP = 3

E(daily profit) 
[Euro]

267.77 269.27 284.77 298.31

unfairday 0.0 0.0 0.0 0.0

Δ(profit) -6.21% -10.84% -13.51% -16.91%

δP = 0 δP = 1 δP = 2 δP = 3

E(daily profit) 
[Euro]

285.58 302.13 329.27 359.12

unfairday 0.257 0.374 0.527 0.532

Dynamic Pricing for EV Charging Considering Fairness
provided by Dr. Steffen Limmer, HRI-EU
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EC Applications –
Engineering Design Optimization



Representations

representation with bias

parameter set that code

for solution A

sets for B

sets for C

sets for D

High-quality shape representations strongly influence the success of optimizations

 regularity

no solutions should be favoured

solely by the representation

 strong causality

the variation induced neighbourhood

relation in both spaces should be

conserved under the

genotype – phenotype mapping

10

 completeness

all feasible solutions should be reachable with the representation

Common Principles
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Representations: Shape Morphing
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Background
• GE Honda develops turbofan engine HF120 for HondaJet
• Many components need to be optimized during design process

 Improve aerodynamic efficiency of fan blade
• Accurate CFD simulations with realistic conditions are very resource consuming

Problems
• Only few optimization runs can be done

 How representative/reproducible are obtained results
local minima? Initialization? Evaluation noise? Setup variations?

• What representation for geometry changes?
• Number of parameters
 Expected tradeoff between achievable efficiency and number of parameters: 
More parameters  higher flexibility potentially better improvement  but more evaluations necessary: true?!?

• Which optimization algorithm? 

Target
• Get better understanding of fitness landscape for real-world turbo-fan optimization problem
• How much variation exists when running same or similar optimizations multiple times:

• in performance (efficiency)? in actual design/geometry?

GE Honda HF120 turbofan engine 

Evolutionary Optimization of Turbine Blades
provided by Dr. Sebastian Schmitt, HRI-EU
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J. Kmec, S. Schmitt, Exploring the Fitness Landscape of a Realistic Turbofan Rotor Blade Optimization. EngOpt 2018 Proc. of the 6th International Conference on Engineering Optimization. Springer, 2019



CFD Simulation setup
• Flow in fan rotor passage

• Trans-sonic compressible flow
• OpenFOAM setup (~ 96 cpu-hours for one evaluation)
• Cruise operating condition (rpm, mass flow rate)

Optimization setup
• Fitness function (minimized)

𝑓 = 1 −
𝜂cruise

𝜂base,cruise
+ Penalties

Penalty term ensures converged flow

Blade deformation representation
• Three deformable sections: hub, mid-span, shroud

(other sections are interpolated)

• Deform sections with Hicks-Henne shape functions
• Also move and rotate sections
• Number of shape functions per section 𝑁HH/section ∈ 3,12

 Dimensionality of representation: 
𝐷 = 3 (𝑁HH/section + 3) ∈ [18, 45]

Evolutionary Optimization of Turbine Blades
provided by Dr. Sebastian Schmitt, HRI-EU
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Influence of random initialization
• Similar efficiencies 

• Seed 1: Δ𝜂rel = 3.97%, Seed 2: Δ𝜂rel = 3.91%,
Seed 3: Δ𝜂rel = 4.05%

• Geometries: qualitative differences in aerodynamically sensitive regions

Influence of optimization algorithm
• More explorative search in PSO: step-size and initialization 
• Similar efficiency improvements 

• PSO: Δ𝜂rel = 3.42%
• CMA-ES: Δ𝜂rel = 3.45%

• Geometries: qualitative differences in aerodynamically sensitive regions

Influence of dimensionality of representation
• No clear trend in optimization progress
• No clear trend for achievable efficiency improvement
• Geometries: qualitative differences in aerodynamically sensitive regions

Conclusions
• All the tested variants achieve comparable improvements
• Optimized geometries showed substantial variation over the complete blade geometry
• Even minor changes lead to very different geometries 
• Fitness landscape is highly multi-modal with many local minima and small basins of attractions

Evolutionary Optimization of Turbine Blades
provided by Dr. Sebastian Schmitt, HRI-EU
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Representations – Shape Morphing
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Shape Morphing - Challenges

Shape Morphing

• Operation to transform an initial design to a deformed design

• Mapping of discretized surface by spline functions or RBF kernels

(i.e. many surface points are reduced to a lower number of parameters)

• For EC: Optimal trade-off needs to be found for minimum parameters with maximal 

shape flexibility

• For EC: Shape morphing allows online adaptation of parameter number for more

local deformations

• [For CFD/FE simulations: simultaneous deformation of design and numerical grid]

2-level Challenge

• Higher level: Comparison of different deformation types

• Lower level: Optimal number and distribution of initial control points or RBF kernels

„The Value of Evolvability“
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Evolvability – Complex Systems Engineering

Potential Definitions

• Evolvability is an evolved quality and is specified as the ability of the configuration space 

(in this case, the space of genotypes and phenotypes) to produce an endless supply of 

viable configurations with remarkably few obvious dead-ends
A. A. Minai, D. Braha, and Y. Bar-Yam, “Complex Engineered Systems: A New Paradigm,“ in Complex Engineered Systems, D. Braha, A. Minai, Y. Bar-Yam (Eds.), Springer, Berlin, 2006 

• Evolvability is considered in the sense of the capacity of a system to produce favorable 

phenotypic variations of a design within a moderate number of generations while 

avoiding non-feasible mutations
H. Lehmann, and S. Menzel, “Evolvability as the Concept for the Optimal Design of Free-Form Deformation Control Volumes,” in IEEE Congress on Evolutionary Computation (CEC), Brisbane, 2012 

• Produce favorable solutions → Performance increase

• Moderate number of generations → Time

• Avoid non-feasible mutations → Search space and direction



Comparison of Deformation Types

performance comparison

aliasing

artifacts

DMFFD RBF

mesh smoothness based on mean curvature visualizations

Computational Performance Quality

Adaptivity
target

DM-FFD

RBF

Mesh Quality

RBF

DM-FFD

D. Sieger, S. Menzel, and M. Botsch, “On Shape Deformation Techniques for Simulation-based Design Optimization,” in New challenges in grid generation and adaptivity for scientific computing, 

SEMA SIMAI Springer Series, 2015
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Comparison of Deformation Types
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OpenFOAM CFD solver mesh check

Summary

“Evolvability perspective”

• RBF deformations comprise the highest potential to successfully generate valid 

designs within the mutation step of an evolutionary design optimization

• FFD is a recommended method if fast and simple conceptual design exploration 

should be robustly achieved

Mesh Quality (cont.)



Optimal Deformation Set-Up
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Engineering Design Optization

• Initial deformation set-up: minimum parameter number w/ max. flexibility

• Initial deformation set-up: strong influence on search efficiency

A. Richter, J. Achenbach, S. Menzel, and M. Botsch, “Evolvability as a quality criterion for linear deformation representations in evolutionary optimization,” in Proceedings of IEEE Congress on Evolutionary 

Computation, pp. 901–910, 2016.

A. Richter, S. Dresselhaus, S. Menzel, and M. Botsch, ”Orthogonalization of linear representations for efficient evolutionary design optimization,” in GECCO, Japan, 2018.

Challenges

• Human set-up: time consuming process, typically shape feature based (less surprising)

• Development of computational set-up method which integrates historic data



Optimal Deformation Set-Up
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Initial idea and early experiments

• Simplified FFD control volume

Point of 

interest

Modify CP1 and CP2 and

count the number of 

unmodifed POI

Evolutionary target matching experiment

w/o step size 

adaptation

w/ step size 

adaptation

Distance of non-matched optimizations

Experimental results (Evolutionary target matching optimization)

w/o step size 

adaptation
w/ step size 

adaptation

Control volumes w/ higher evolvability converge faster; 

better fitness after fixed number of iterations
S. Menzel, “Evolvable free-form deformation control volumes for evolutionary design optimization,” in IEEE Congress on Evolutionary Computation, IEEE, New Orleans, pp. 1388-1395, 2011



Optimal Deformation Set-Up
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Generalization

• Linear Deformation Representations: M´ = M + Up

• Deformation Matrix: U 

A. Richter, “Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization,“ Doctoral Dissertation, Bielefeld University, 2019 (to appear).

A. Richter, J. Achenbach, S. Menzel, and M. Botsch, “Evolvability as a quality 
criterion for linear deformation representations in evolutionary optimization,” in 
Proceedings of IEEE Congress on Evolutionary Computation, pp. 901–910, 2016

Infill distance

Targets equally

spaced kernel/control

point distribution

Gradient 

information

Targets kernel/control

point distribution to

match given data

Orthogonalization of 

deformation matrix

(e.g. SVD)

Improves

convergence speed

of evolutionary opt.



Optimal Deformation Set-Up
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A Computational Method for Deformation Set-up

• Multi-objective optimization for “Variability” (Infill distance) and “Improvement potential” 

(gradient information): Exploration vs. exploitation

• Gradient information options:

• Initial information based on shape information (human heuristics)

• Initial information based on existing historic data

• Online adaptation of set-up while gathering information during optimization

• Optimal convergence speed: “Regularity” by orthogonalization

A. Richter, “Evolvability-guided Optimization of Linear Deformation Setups for Evolutionary Design Optimization,“ Doctoral Dissertation, Bielefeld University, 2019 (to appear).

Equal distirbution

favoring no

direction

Target shape matchimg

Kernel adjusted to

expected optimum



“Regularity” by Orthogonalization
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Regularity

• Defined as condition number of deformation matrix

• Force R = 1 by orthogonalization

Example: Evolutionary Face Matching Optimization

• Uniform set-up: fast but worse fitness

• Adapted set-up: slow but better fitness

• Adapted + orthogonal: fast and good fitness!

• Orthogonalization speeds up convergence

• Disadvantage: Unintuitive for a human-based opt.



Summary and Outlook



Summary
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Summary

• Evolvability criteria provide potential characteristics for developing computational 

methods to find optimal representations

• Optimal representations allow efficient evolutionary search

• Shape morphing methods:

• High level comparisons favor RBF deformations for practical applications; 

FFD is promising for initial robust trials to learn about the shape and performance

• Deformation set-ups can be computed using a multi-objective optimization for an 

optimal trade-off between exploration and exploitation

• Orthogonalization of deformation matrix increases convergence speed

Outlook

• Evaluation of shape morphing set-up in aerodynamic optimization

• Evaluation of shape morphing set-up for Hicks-Henne splines

• Evaluation of shape morphing set-up in dynamic optimization problems using online 

learning 



Thank you for your attention


