

When Evolutionary Multiobjective Optimization Meets Large-Scale Decision Variables: Challenges and Solutions

Email: <u>chengr@sustech.edu.cn</u>

Group Website: http://emi.sustech.edu.cn

1

• Members:

Currently, there are two PDRAs (博后), four RAs (研究助理), and one master student in EMI.

Research Interests:

The Evolving Machine Intelligence (EMI) Lab focuses on evolvable intelligent systems. We are motivated to understand how evolution generates complexity, diversity and intelligence by computational simulations.

Future Work:

A major focus is on neuro-evolution, where large-scale deep neural networks are evolved for structure optimization. We are also interested in combining deep learning and evolutionary computation to develop optimization methods.

常年招收优秀研究助理、博士后,硕士生,博士生

Dr. Ran CHENG

♦ Background:

I received the Ph.D. degree from the University of Surrey, Guildford, U.K., in 2016. My PhD study was financed by the Honda Research Institute Europe (HRI-EU).

Before joining the SUSTech as an Assistant Professor, I was a Research Fellow at the University of Birmingham.

♦ Research interests:

Computational intelligence, deep Learning, evolutionary computation, large-scale optimization.

Background

- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

Background

Large-scale multiobjective optimization \square Formulation of multiobjective optimization problem (MOP): $\min_{\mathbf{x}} f_i(\mathbf{x}) \quad i = 1, 2, ..., M$

s.t. $\mathbf{x} \in [\mathbf{a}, \mathbf{b}]$ and M > 1,

where $\mathbf{x} = (x_1, x_2, ..., x_D)$ is the **decision vector** which consists a large number of D decision variables, $f_i(\mathbf{x})$ are the **optimization objectives**, **a** and **b** are the **box constraints**.

- □ Difficulties in large-scale MOP (LSMOP)
 - ✓ Huge volume of search space
 - ✓ Complex fitness landscape
 - ✓ Multiple interactions:
 - Interaction between the variables
 - Interaction between the variables and objectives

Multi-objective optimization problem

An example of large-scale multi-objective optimization – Community detection in complex networks

Background

Some definitions

□ Variable interaction:

 \mathbf{x}_i and \mathbf{x}_j are interacting *iff* there exist a_1, a_2, b_1, b_2 statisfying $f(\mathbf{x})|_{x_i=a_2, x_j=b_1} < f(\mathbf{x})|_{x_i=a_1, x_j=b_1} \land$

$$f(\mathbf{x})|_{x_i=a_2,x_j=b_2} > f(\mathbf{x})|_{x_i=a_1,x_j=b_2},$$

where

$$f(\mathbf{x})|_{x_i=a_2,x_j=b_1} \triangleq f(x_1,...,x_{i-1},a_2,...,x_{j-1},b_1,...,x_D).$$

□ Partially separable:

Function $f_i(x)$ is called a partially separable function with k components *iff* $\underset{\mathbf{x}}{\operatorname{arg\,min}} f(\mathbf{x}) = (\underset{\mathbf{x}_1}{\operatorname{arg\,min}} f(\mathbf{x}_1, \ldots), \ldots, \underset{\mathbf{x}_k}{\operatorname{arg\,min}} f(\ldots, \mathbf{x}_k)),$ \square Variable interaction in MOPs: Convergence-related Diversity-related

- Background
- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

Motivation

- No existing benchmark test suite for LSMOPs
- Promote the research in large-scale multi-/many-objective optimization
- Properties of the proposed LSMOPs:
 - Uniform design formulation.
 - Scalable to number of objectives
 - Scalable to number of decision variables
 - Exact shapes and locations of the PFs $\checkmark F(x)$: Test function
 - \checkmark H(x^f) : Shape matrix
 - $\checkmark G(\mathbf{x}^{s})$: Landscape matrix
 - ✓ $h_1(\mathbf{x}^f)$,... $h_M(\mathbf{x}^f)$: Shape functions
 - $\checkmark \bar{g}_1(\mathbf{x}^s), ..., \bar{g}_M(\mathbf{x}^s)$: Landscape functions
 - $\checkmark \mathbf{C}$: Correlation matrix
 - $\checkmark L(\mathbf{x}^{s})$: Linkage function

Cheng R, Jin Y, Olhofer M. Test problems for large-scale multiobjective and many-objective optimization. IEEE Transactions on Cybernetics, 2017, 47(12): 4108-4121.

Test problem for large-scale multiobjective optimization

Correlation in LSMOPs

Separable correlation

Overlapped correlation

 $f_1($

0

:

□ Full correlation

Test problem for large-scale multiobjective optimization

Problem characteristics

□ The decision variables are nonuniformly divided into a number of groups.

$$\mathbf{x}^s = \left(\mathbf{x}_1^s, \ldots, \mathbf{x}_M^s\right) \qquad \qquad \mathbf{x}_i^s = \left(\mathbf{x}_{i,1}^s, \ldots, \mathbf{x}_{i,n_k}^s\right)$$

Different groups of decision variables are correlated with different objectives.

The decision variables have mixed seperability.
 The decision variables have linkages on the PSs.

Test problem for large-scale multiobjective optimization

Problem	М	IM-MOEA	MOEA/D-DE	NSGA-II	Problem	Μ	IBEA	RVEA	NSGA-III
		1.10E-01	1.90E-02	3.05E-01			6.41E-01	6.83E-01	2.27E+00
	2	1.32E-01	2.13E-02	3.13E-01		6	9.13E-01	7.06E-01	3.47E+00
LEMODI		1.82E-01	7.08E-02	3.23E-01	L SMOP1		9.34E-01	1.09E+00	4.18E+00
LSMOPT		4.60E-01	1.01E+00	8.07E-01	LSMOPT		7.11E-01	7.01E-01	5.05E+00
	3	8.03E-01	1.13E+00	9.27E-01		10	9.15E-01	7.67E-01	5.62E+00
		9.75E-01	1.30E+00	9.98E-01			1.06E+00	8.51E-01	6.33E+00
		6.27E-02	8.38E-02	8.39E-02			1.66E-01	2.19E-01	2.22E-01
	2	6.39E-02	8.61E-02	8.90E-02		6	1.76E-01	2.21E-01	2.23E-01
I CMODO		6.80E-02	9.07E-02	9.42E-02	L SMOD2		1.92E-01	2.23E-01	2.24E-01
LSMOP2		8.27E-02	8.48E-02	9.61E-02	LSMOP2		2.24E-01	2.39E-01	2.51E-01
	3	8.54E-02	8.56E-02	9.93E-02		10	2.36E-01	2.44E-01	2.52E-01
		9.61E-02	8.73E-02	1.00E-01			2.45E-01	2.46E-01	2.53E-01
		1.45E+00	5.02E-01	1.35E+00			7.42E+00	8.76E-01	1.14E+01
	2	1.72E+00	7.08E-01	1.42E+00		6	1.63E+01	1.03E+00	1.83E+01
1.02.0002		2.49E+00	7.08E-01	1.75E+00	I CMOD2		2.05E+01	1.04E+00	2.27E+01
LSMOP3		3.26E+00	5.46E+00	3.71E+00	LSMOP3		1.06E+00	1.02E+00	7.73E-01
	3	4.40E+00	7.41E+00	4.33E+00		10	2.27E+00	1.07E+00	4.27E+00
		7.99E+00	7.88E+00	4.91E+00			3.34E+00	1.21E+00	1.16E+01
		7.12E-02	3.12E-02	1.28E-01			1.81E-01	2.87E-01	2.79E-01
	2	7.14E-02	6.33E-02	1.28E-01		6	1.82E-01	2.95E-01	2.82E-01
	_	7.62E-02	9.72E-02	1.33E-01	I CLODA		1.90E-01	3.04E-01	2.84E-01
LSMOP4		2.06E-01	2.21E-01	2.54E-01	LSMOP4		2.32E-01	2.75E-01	2.93E-01
	3	2.12E-01	2.22E-01	2.56E-01		10	2.36E-01	2.77E-01	2.94E-01
		2.20E-01	2.27E-01	2.71E-01			2.45E-01	2.81E-01	2.96E-01
		2.17E-01	1.40E-02	3.41E-01			4.33E-01	8.77E-01	5.37E+00
	2	2.77E-01	1.61E-02	3.42E-01		6	1.00E+00	8.83E-01	6.39E+00
	_	4.66E-01	1.82E-02	3.44E-01			1.22E+00	9.24E-01	7.79E+00
LSMOP5		6.91E-01	5.97E-01	1.48E+00	LSMOP5		7.54E-01	1.25E+00	4.23E+00
	3	9.85E-01	7.03E-01	1.64E+00		10	7.55E-01	1.25E+00	4.70E+00
		1.40E+00	1.20E+00	1.82E+00			1.26E+00	1.25E+00	1.56E+01
		5.44E-01	7.44E-01	7.18E-01			1.54E+00	1.23E+00	1.42E+00
	2	6.17E-01	7.44E-01	7.74E-01		6	1.78E+00	1.28E+00	1.43E+00
	_	7.76E-01	7.44E-01	8.72E-01			1.89E+00	1.30E+00	2.10E+00
LSMOP6		2.86E+00	1.20E+00	1.80E+00	LSMOP6		1.68E+00	1.13E+00	1.95E+00
	3	1.06E+01	1.74E+00	2.45E+00		10	1.75E+00	1.34E+00	2.17E+00
		1.43E+01	2.01E+00	2.62E+00			2.01E+00	1.36E+00	3.67E+02
		2.88E+00	1.12E+00	1.71E+00			1.97E+00	2.29E+00	6.10E+01
	2	4 35E+00	1.93E+00	2.20E+00		6	2.21E+00	3.16E+00	6.83E+02
101000	_	5.67E+00	2.97E+00	2.41E+00			2.24E+00	6.41E+00	2.88E+03
LSMOP7		1.21E+00	9.48E-01	1.49E+00	LSMOP7		1.44E+00	2.07E+00	2.23E+00
	3	1.25E+00	9.48E-01	1.50E+00		10	1.58E+00	2.59E+00	4.93E+00
		1.36E+00	9.48E-01	1.54E+00			2.19E+00	3.53E+00	4.69E+02
		1.11E-01	4.81E-02	3.46E-01			6.69E-01	8.44E-01	2.16E+00
	2	1.91E-01	4.97E-02	3.47E-01		6	6.88E-01	8.55E-01	3.06E+00
	_	2.19E-01	5.21E-02	3.55E-01			8.07E-01	9.00E-01	3.45E+00
LSMOP8		3.70E-01	5.60E-01	3.15E-01	LSMOP8		7.48E-01	9.65E-01	9.59E-01
	3	4.02E-01	5.69E-01	3.28E-01		10	7.55E-01	1.01E+00	9.81E-01
	_	4.26E-01	5.85E-01	3.74E-01			8.04E-01	1.03E+00	4.52E+00
		6.85E-01	3.20E-01	8.11E-01			7.87E+00	1.05E+01	7.84E+00
	2	9.95E-01	3.36E-01	8.11E-01		6	8.74E+00	1.34E+01	8.63E+00
	_	1.28E+00	3.42E-01	8.11E-01			9.14E+00	1.18E+02	9.13E+00
LSMOP9		1.39E+00	4.16E-01	1.63E+00	LSMOP9		1.19E+01	5.51E+01	3.74E+01
	3	2.40E+00	4.80E-01	2.53E+00		10	1.31E+01	8.35E+01	3.81E+01
		2.43E+00	4 90E-01	2.60E+00		10	1.35E+01	3.10E+02	4 36E+01
		2.4515400	4.901-01	2.0015+00			1.5515+01	5.106+02	4.506401

The IGD results achieved by the compared algorithms.

- Introduction to EMI Group
- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

The benchmark LSMOPs are regular in terms of their formulations, Pareto optimal fronts (PF), Pareto optimal sets (PS), etc.

- □ The multiplication/addition-based form
 - $f(\mathbf{x}) = (1 + g(\mathbf{x})) \cdot h(\mathbf{x})$ $f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x}),$
- **D** Properties of existing test problems
 - ✓ Regular PF
 - ✓ Regular PS
 - ✓ Regular variable interaction

The time-varying ratio error estimation (TREE) task in the power delivery system Problem descriptions

 $x = (x_{A1}, \dots, x_{An}, x_{B1}, \dots, x_{Bn}, x_{C1}, \dots, x_{Cn})$ (The decision variables of the TREE, the real voltage values) $d_1 = (d_{A11}, \dots, d_{An1}, d_{B11}, \dots, d_{Bn1}, d_{C11}, \dots, d_{Cn1})$ \dots $d_k = (d_{A1k}, \dots, d_{Ank}, d_{B1k}, \dots, d_{Bnk}, d_{C1k}, \dots, d_{Cnk})$

(The voltage values measured by k three-phase voltage transformers)

 $e^{i} = \left(\frac{d_{A1i} - x_{A1}}{x_{A1}}, \dots, \frac{d_{Ani} - x_{An}}{x_{An}}, \frac{d_{B1i} - x_{B1}}{x_{B1}}, \dots, \frac{d_{Bni} - x_{Bn}}{x_{Bn}}, \frac{d_{C1i} - x_{C1}}{x_{C1}}, \dots, \frac{d_{Cni} - x_{Cn}}{x_{Cn}}\right)$

(Ratio error between the measured value and the real value)

 $D^{i}=(e_{2}^{i}-e_{1}^{i},\cdots,e_{n+1}^{i}-e_{n}^{i})$

(Time-varying relationship of the ratio errors)

The data collected from different voltage transformers

Variable interaction in TREE

□ Variable interaction with one function (by DG2)

□ Variable interaction with multiple functions (by LMEA and MOEA/DVA).

Problem	Part	f_1	f_2	f_3	g_1	g_2	g_3	g_4	g_5	g_6
TDEE1	part 1	0	200:200:200	-	600	600	600	-	-	-
IKEEI	part 2	600	0	-	0	0	0	-	-	-
TDEE2	part 1	0	400:400:400	_	1200	1200	1200	_	_	-
I KEE2	part 2	1200	0	-	0	0	0	-	-	-
TDEE2	part 1	0	200:200:200	-	600	600	600	_	_	_
IKEES	part 2	600	0	-	0	0	0	-	-	-
TDEE4	part 1	0	400:400:400	-	1200	1200	1200	1200	_	-
IKEE4	part 2	1200	0	-	0	0	0	0	-	-
TDEE	part 1	0	400:400:400	_	1200	1200	1200	1200	_	_
TREES	part 2	1200	0	-	0	0	0	0	-	-
TDEE4	part 1	0	300:150:150	300:150:150	1200	1200	1200	1200	600	600:600
IKEE0	part 2	1200	600	600	0	0	0	0	600	0

'part 1' is the number of decision variables in each group and 'part 2' is the number of groups with one decision variable.

Differential groupings associated with each objective/ constraint function.

Drahlam	MOE	A/DVA	LMEA					
Problem	Objectives	Constraints	Objectives	Constraints				
TREE1	600:0	598:2	600:0	337:263				
TREE2	1199:1	1200:0	1200:0	341:859				
TREE3	597:3	600:0	600:0	14:586				
TREE4	1197:3	1200:0	1200:0	126:1074				
TREE5	599:1	1200:0	1200:0	199:1001				
TREE6	1193:1207	2380:20	1200:1200	2346:54				

Convergence-/diversity-related variable analysis associated with all the objectives/constraints.

- ✓ Fully separable/non-separable and partially separable interactions are involved.
- ✓ Convergence-/diversity-related variables are involved in both the objectives and constraints.
- ✓ It is interesting to observe the different analysis results obtained by LMEA and MOEA/DVA.

Performance of existing MOEAs on TREE problems INSGA-II, MOEA/D, GDE3, CMOPSO, MOPSO, IBEA, MOEA/DVA, WOF-SMPSO

Problem	Dim	NSGA-II	MOEA/D	GDE3	CMOPSO	MOPSO	IBEA	MOEA/DVA	WOF-SMPSO
	1	1.99E+01(5.61E-02)	2.00E+01(1.82E-02)	2.30E+01(4.28E-01)	2.21E+01(1.73E-01)	2.47E+01(9.22E-02)	2.02E+01(8.83E-02)	5.91E+01(2.38E-01)	1.39E+00(4.01E-01)
	2	2.58E+01(6.28E-02)	2.58E+01(8.64E-02)	2.88E+01(2.78E-01)	2.68E+01(2.17E-01)	3.05E+01(1.55E-01)	2.52E+01(5.01E-02)	1.30E+02(3.68E-01)	2.48E+01(1.17E+00)
TREE1	3	3.85E+01(2.70E-01)	3.87E+01(1.34E-01)	4.28E+01(5.00E-01)	3.90E+01(6.36E-01)	4.44E+01(1.89E-01)	3.73E+01(5.16E-02)	1.96E+02(2.95E-01)	3.56E+01(7.90E-01)
	4	5.26E+01(3.46E-01)	5.25E+01(2.33E-01)	6.04E+01(4.71E-01)	5.36E+01(1.23E+00)	6.16E+01(1.96E-01)	5.09E+01(7.49E-02)	2.60E+02(5.99E-01)	4.49E+01(1.22E+00)
	5	6.64E+01(2.85E-01)	6.60E+01(2.59E-01)	7.45E+01(4.77E-01)	6.64E+01(7.95E-01)	7.48E+01(2.87E-01)	6.39E+01(1.50E-01)	3.27E+02(4.74E-01)	5.59E+01(9.68E-01)
	1	5.06E+01(4.65E-01)	5.05E+01(2.72E-01)	5.40E+01(7.52E-01)	5.16E+01(2.75E-01)	5.63E+01(1.34E-01)	4.90E+01(6.07E-02)	2.57E+02(5.69E-01)	3.49E+01(1.53E+00)
	2	1.00E+02(6.52E-01)	9.90E+01(4.81E-01)	1.09E+02(6.22E-01)	9.81E+01(2.42E+00)	1.10E+02(2.21E-01)	9.57E+01(6.25E-02)	5.19E+02(9.28E-01)	6.95E+01(2.08E+00)
TREE2	3	1.56E+02(9.61E-01)	1.53E+02(5.84E-01)	1.69E+02(2.16E-01)	1.54E+02(3.10E+00)	1.70E+02(2.73E-01)	1.49E+02(3.36E-01)	7.76E+02(9.57E-01)	1.11E+02(1.56E+01)
	4	1.96E+02(2.52E-01)	1.92E+02(1.52E-02)	2.12E+02(1.34E-01)	1.97E+02(2.95E-01)	2.12E+02(7.87E-02)	1.88E+02(6.09E-02)	1.05E+03(6.07E-01)	1.25E+02(2.40E+00)
	5	2.53E+02(0.00E+00)	2.47E+02(0.00E+00)	2.81E+02(5.99E-14)	2.48E+02(0.00E+00)	2.79E+02(5.99E-14)	2.44E+02(0.00E+00)	1.30E+03(0.00E+00)	1.75E+02(3.00E-14)
	1	2.20E+02(1.93E-01)	3.58E+02(3.44E+00)	2.20E+02(5.57E-02)	1.13E+02(3.36E+00)	2.15E+02(1.33E+00)	2.02E+02(1.07E+00)	2.92E+02(6.34E+00)	6.78E+02(4.00E-03)
	2	4.34E+02(3.77E-01)	7.43E+02(2.77E+00)	4.33E+02(9.86E-02)	2.56E+02(5.72E+00)	4.27E+02(7.88E-01)	4.04E+02(1.56E+00)	6.05E+02(4.48E+00)	1.36E+03(2.91E-03)
TREE3	3	8.04E+02(4.10E-01)	1.27E+03(8.98E+00)	8.00E+02(1.21E-01)	5.44E+02(3.40E+00)	7.96E+02(1.49E+00)	7.60E+02(1.24E+00)	1.17E+03(6.12E+00)	2.80E+03(2.08E-02)
	4	1.09E+03(3.17E-01)	1.69E+03(6.43E+00)	1.08E+03(5.38E-02)	7.47E+02(6.34E+00)	1.08E+03(6.31E-01)	1.03E+03(1.68E+00)	1.69E+03(4.87E+00)	4.28E+03(9.48E-03)
	5	1.33E+03(4.23E-01)	2.24E+03(8.61E+00)	1.32E+03(2.33E-01)	9.59E+02(4.15E+00)	1.32E+03(2.04E+00)	1.27E+03(2.61E+00)	2.10E+03(1.44E+01)	5.89E+03(1.87E+00)
	1	2.31E+01(1.03E-02)	2.09E+01(0.00E+00)	2.18E+01(0.00E+00)	1.96E+01(3.74E-15)	1.99E+01(0.00E+00)	2.07E+01(3.74E-15)	9.32E+01(0.00E+00)	2.28E+01(0.00E+00)
	2	5.32E+01(1.50E-14)	4.27E+01(7.49E-15)	4.45E+01(7.49E-15)	4.07E+01(7.49E-15)	4.07E+01(7.49E-15)	4.64E+01(7.49E-15)	1.88E+02(0.00E+00)	4.38E+01(7.49E-15)
TREE4	3	-	-	-	-	-	-	-	-
	4	8.42E+00(1.77E+01)	4.13E+01(8.39E-05)	-	-	-	-	-	-
	5	-	-	-	-	-	-	-	-
	1	1.50E+01(4.76E+01)	1.53E+01(4.83E+01)	2.16E+01(6.84E+01)	1.80E+01(5.70E+01)	2.33E+01(7.37E+01)	1.49E+01(4.73E+01)	5.97E+01(1.89E+02)	2.39E+01(7.57E+01)
	2	1.12E+02(1.50E-14)	1.19E+02(1.50E-14)	2.60E+02(5.99E-14)	1.37E+02(3.00E-14)	-		-	-
TREE5	3	1.93E+02(6.37E-01)	1.99E+02(5.38E-01)	4.01E+02(4.41E+00)	2.48E+02(1.46E+00)	4.14E+02(1.78E-01)	1.88E+02(2.37E-01)	-	-
	4	2.49E+02(1.14E+00)	2.54E+02(1.03E+00)	5.57E+02(5.07E+00)	3.27E+02(1.78E+00)	1.12E+02(2.37E+02)	2.43E+02(1.77E-01)	-	-
	5	9.60E+01(1.55E+02)	3.26E+02(1.25E+00)	1.44E+02(3.03E+02)	9.02E+01(1.90E+02)	1.36E+02(2.86E+02)	-	-	-
	1	2.07E+03(3.91E-01)	2.07E+03(7.90E-02)	2.07E+03(7.15E-02)	2.07E+03(1.86E+00)	2.07E+03(2.19E-02)	2.07E+03(3.10E-02)	2.10E+03(9.98E-01)	1.83E+03(6.33E+02)
	2	6.78E+07(8.24E-02)	6.78E+07(4.83E-02)	6.78E+07(4.58E-03)	6.78E+07(1.57E-08)	6.78E+07(0.00E+00)	6.78E+07(1.57E-08)	6.78E+07(0.00E+00)	3.41E+05(6.14E-11)
TREE6	3	-	-	-	-	-	-	-	-
	4	-	-	-	-	-	-	-	-
	5	1.59E+01(2.55E+01)	3.96E+01(1.15E-01)	-	-	-	-	-	-

'-' indicate that the compared algorithm fail to obtain any feasible solution.

IGD results achieved by different algorithms

- Not well converged or distributed
- ✓ Small number of feasible solutions
- Fail to solve problems with complex objectives or large-scale decision variables

Non-dominated solutions obtained by each algorithm on TREE1 and TREE6

- Introduction to EMI Group
- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

Solving large-scale many-objective optimization problems

LSMOPs are challenging: too many decision variables to optimize – no way to optimize all together.

- □ Solve in a divide-and-conquer manner
 - ✓ Cooperative coevolution based MOEA (CCGDE3, 2013)
 - ✓ Dimension reduction based method (DR_NSGA-II_KN, 2014)
 - ✓ Decision Variable clustering based MOEA (LMEA, 2018)

Use of Cooperative Coevolution for Solving Large Scale Multiobjective Optimization Problems

Luis Miguel Antonio and Carlos A. Coello Coello Computer Science Department CINVESTAV-IPN (Evolutionary Computation Group) Av. IPN No. 2508, Col. San Pedro Zacatenco, Mexico City .07300, Mexico. Imiguel@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx A Memetic Optimization Strategy Based on Dimension Reduction in Decision Space

Handing Wang wanghanding@163.com Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center of Intelligent Perception and Computation, Xidian University, Xi'an, 710071, China

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 22, NO. 1, FEBRUARY 2018

A Decision Variable Clustering-Based Evolutionary Algorithm for Large-Scale Many-Objective Optimization

Xingyi Zhang, Ye Tian, Ran Cheng, and Yaochu Jin, Fellow, IEEE

How about large-scale many-objective optimization problems?

- ✓ Huge decision space as well as objective space
- Difficulty in balancing convergence and diversity

LMEA: Large-scale many-objective evolutionary algorithm

□ Solve in a divide and conquer manner

- ✓ Cluster the decision variables into two groups (DV and CV)
- ✓ Further divided the CV into several subgroups (*subCVs*)
- ✓ Iteratively optimize *subCV* and *DV*

Variable clustering in LMEA

- Perturbation and clustering
 - ✓ Perturb each variable of one solution several times
 - ✓ Generate a line to fit the solutions obtained by perturbing each variable
 - \checkmark Use K-means to divide all variables into two clusters

Variable clustering in LMEA

Convergence-related and diversity-related variables

- ✓ Convergence-related variables: can make better convergence with little diversity change
- Diversity-related variables: change the distribution of the solutions but contribute little to convergence

Decision variable grouping accuracy in comparison with MOEA/DVA

Problem	Obi		MOEA/DVA		LM	EA	Romark
TIODIem	00j.	Diversity	Convergence	Both	Diversity	Convergence	Kennark
DTI 71	5	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Ø	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	
DILLI	10	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	Ø	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	
DTI 72	5	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Ø	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	
	10	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	Ø	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	
DTI 73	5	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Ø	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Same
DILLO	10	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	Ø	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	results
DTI 74	5	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Ø	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	
DILLI	10	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	Ø	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	
DTI 77	5	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	Ø	$\{x_1, x_2, x_3, x_4\}$	$\{x_5,\ldots,x_{16}\}$	
	10	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	Ø	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	
	5	$\int r_{1} r_{2} r_{3} r_{4} r_{4}$	$\{x_7, x_9, x_{10}, x_{11}, $	Sry ro ro rio riol	$\int r_4 r_2 r_3 r_4$	In real	The variables
DTLZ5		$[x_1, x_2, x_3, x_4]$	x_{13}, x_{14}, x_{15}	$[x_5, x_6, x_8, x_{12}, x_{16}]$	$[x_1, x_2, x_3, x_4]$	$\{x_5,\ldots,x_{16}\}$	related to both
	10	$\{x_1,\ldots,x_9\}$	$\{x_{11}\}$	$\{x_{10}, x_{12}, \dots, x_{15}\}$	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	convergence
	5	$\{r_1, r_2, r_3, r_4\}$	$\{x_5,\ldots,x_{11},$	$\{r_{10}, r_{14}\}$	$\{r_1, r_2, r_3, r_4\}$	$\{r_r, r_{10}\}$	and diversity
DTLZ6		[1, 2, 23, 24]	x_{13}, x_{15}, x_{16}	$[x_{12}, x_{14}]$	[1, 2, 23, 24]	$[x_5, \ldots, x_{16}]$	are labeled
	10	$\{x_1,\ldots,x_9\}$	$\{x_{12}, x_{13}\}$	$\{x_{10}, x_{11}, x_{14}, x_{15}\}$	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	as convergence
	5	$\{x_1, x_2, x_2, x_4\}$	$\{x_8,\ldots,x_{13},$	$\{x_{5}, x_{6}, x_{7}, x_{14}\}$	$\{x_1, x_2, x_2, x_4\}$	$\{x_{5}, \dots, x_{16}\}$	related variables
WFG3		$[w_1, w_2, w_3, w_4]$	x_{15}, x_{16}	$[w_5, w_6, w_7, w_{14}]$	$[w_1, w_2, w_3, w_4]$	$[w_5, \ldots, w_{10}]$	
	10	$\{x_1,\ldots,x_9\}$	$\{x_{14}, x_{15}\}$	$\{x_{10}, x_{11}, x_{12}, x_{13}\}$	$\{x_1,\ldots,x_9\}$	$\{x_{10},\ldots,x_{15}\}$	
UF9	3	Ø	$\{x_3,\ldots,x_{16}\}$	$\{x_1, x_2\}$	$\{x_1, x_2\}$	$\{x_3,\ldots,x_{16}\}$	Labeled as
UF10	$\emptyset \qquad 3 \qquad \emptyset \qquad \{x_3, \dots, x_{16}\} \qquad \{x_1, x_2\}$		$\{x_1, x_2\}$	$\{x_3,\ldots,x_{16}\}$	diversity related		

Variable grouping results on some test instances.

- ✓ Mixed variables are treated as convergence-related variables
- ✓ Similar grouping results

Performance on large-scale many-objective optimization

Problem	Obj.	Dec.	MOEA/D	NSGA-III	KnEA	MOEA/DVA	LMEA	Problem	Obj.	Dec.	MOEA/D	NSGA-III	KnEA	MOEA/DVA	LMEA
		100	1.1859e-1(1.63e-3)-	3.9340e+0(1.72e+0)-	.72e+0)- 6.6202e+0(1.83e+0)- 6.2932e-2(5.72e-5)- 5.9982e		5.9982e-2(4.22e-4)			100	4.5161e-2(9.31e-7)-	1.4957e-1(2.58e-2	2.7185e-1(4.11e-2)-	- 2.0440e-1(5.06e-4)-	4.1162e-3(1.44e-4)
	5	500	1.4648e-1(4.30e-2)-	5.2597e+1(5.63e+0)-	7.6436e+1(6.86e+0)-	6.3284e-2(1.63e-4)-	6.1124e-2(5.16e-4)		5	500	4.5161e-2(1.04e-6)-	1.9413e-1(1.78e-2	2)- 3.1740e-1(6.11e-2)-	 2.0469e-1(5.20e-8)- 	4.0861e-3(1.48e-4)
		1000	1.6833e-1(4.29e-2)-	1 1669e+2(5 08e+0)-	1 3392e+2(1 28e+1)-	6 34420-2(1 260-4)-	6.0423e-2(4.09e-4)	DTLZ5		1000	4.5162e-2(3.32e-7)-	2.0606e-1(1.10e-2	e)- 3.8913e-1(6.77e-2)-	- 2.0461e-1(1.36e-4)-	4.0729e-3(9.90e-5)
DTLZ1		1000	2.21870+0(4.720+0)	1.10090+2(0.000+0)-	5.57490+0(1.520+0)	0.3442C-2(1.20C-4)−	1.62020 1(4.870 2)			100	4.9994e-2(2.41e-4)-	3.1946e-1(2.03e-2	2)— 3.6432e-1(5.71e-2)-	- 1.8877e-1(1.87e-4)-	2.3954e-3(6.95e-5)
	10	700	2.21370+0(4.720+0)-	2.0020-+2(2.72e+1)-	5.5749e+0(1.55e+0)-	1.4000001(1.750-2)~	1.0002+1(4.07+3)		10	500	5.0407e-2(4.16e-4)-	5.2642e-1(2.04e-2	2)- 3.6389e-1(5.43e-2)-	– 1.8866e-1(3.30e-4)–	2.2721e-3(4.47e-5)
	10	500	1.6987e+2(1.01e+2)-	3.9829e+2(2.77e+1)-	5.0951e+1(1.25e+1)-	1.7047e-1(1.14e-2)≈	1.59950-1(4.050-3)			1000	5.0759e-2(2.12e-5)-	6.2093e-1(1.14e-2	2)- 4.1806e-1(5.07e-2)-	- 1.8880e-1(2.03e-4)-	2.0713e-3(6.98e-5)
		1000	4.8922e+2(2.04e+2)-	7.9841e+2(4.16e+1)-	1.4841e+2(1.93e+1)-	1.3805e-1(2.18e-2)≈	1.6002e-1(5.24e-3)			100	1.4970e-1(3.14e-2)-	2.5642e-1(2.29e-2	2)— 5.8811e-1(1.34e-1)-	 1.8236e-1(2.43e-6)— 	3.9943e-3(2.14e-4)
		100	3.2006e-1(2.26e-8)-	1.9494e-1(7.98e-7)-	2.2045e-1(1.18e-2)-	1.9493e-1(9.26e-8)-	1.8825e-1(2.14e-3)		5	500	1.3010e+0(1.04e-1)-	4.9939e-1(1.89e-2	2)- 7.2754e-1(1.43e-1)-	– 1.8236e-1(4.25e-7)–	4.5127e-3(1.22e-3)
	5	500	3.2006e-1(5.31e-8)-	1.9494e-1(5.62e-8)-	2.3629e-1(7.63e-3)-	1.9494e-1(3.17e-8)-	1.8832e-1(2.29e-3)	DTLZ6		1000	2.7140e+0(1.97e-1)-	6.5774e-1(2.19e-2	e) - 1.5085e+0(4.53e-1)	- 1.8236e-1(5.91e-7)-	3.9747e-3(2.29e-4)
DTLZ2		1000	3.2006e-1(1.12e-7)-	1.9494e-1(9.86e-7)-	2.2844e-1(1.00e-2)-	1.9494e-1(6.25e-8)-	1.8816e-1(2.53e-3)			100	6.7510e-2(1.85e-2)-	7.2120e+0(1.35e+	0)- 3.7560e+0(9.56e-1)	- 1.6531e-1(4.09e-2)-	2.4477e-3(5.11e-4)
01000			7.1528e-1(1.81e-2)-	4.2141e-1(1.58e-4)+	4.1230e-1(2.24e-3)+	4.5923e-1(5.13e-2)≈	5.0905e-1(1.48e-2)		10	500	1.1735e+0(2.52e-1)-	8.7171e+1(4.88e+	0) - 6.3085e+0(2.18e+0)	- 1.2750e-1(5.33e-2)-	3.0711e-3(7.20e-4)
10		500	7.2369e-1(8.63e-3)-	4.2152e-1(4.79e-5)+	4.1402e-1(5.07e-3)+	4.1976e-1(3.53e-4)+	5.0617e-1(1.78e-2)			1000	2.6191e+0(5.73e-1)-	1.9202e+2(9.83e+	0) - 4.8989e+0(2.54e+0)	- 1.1844e-1(2.20e-2)-	3.7077e-3(1.66e-3)
		1000	7.3217e-1(1.90e-2)-	4.2172e-1(5.76e-5)+	4.1222e-1(1.85e-3)+	4.2065e-1(1.19e-4)+	5.0689e-1(2.84e-2)		F	100	2.0705e+0(8.91e-2)-	7.7137e-1(3.83e-2 8.6082a-1(3.27a-2	() = 6.2696e-1(4.24e-1)- 2.2284e-1(2.56e-2)-	 2.3769e+0(7.55e-3) - 2.4600e+0(0.15e-2) - 	1.2581e-1(2.91e-2)
		100	3.2877e-1(2.49e-3)-	2.2868e+1(6.14e+0)-	7.6962e-1(4.18e-1)-	1.9505e-1(5.92e-5)-	1.8985e-1(2.14e-3)		5	1000	2.27890+0(8.030-2)- 2.33700+0(8.100-2)-	8.87530-1(2.576-2	2.2264e-1(2.56e-2)	- 2.46996+0(9.156-5)- - 2.4410e+0(3.52e-2)-	1.1730e-1(3.55e-2)
	5	500	4.1776e-1(1.97e-1)-	2.9421e+2(3.34e+1)-	6.1228e-1(1.26e-1)-	1.9536e-1(1.01e-4)≈	1.9035e-1(4.44e-3)	WFG3		100	3.4569e+0(1.29e-1)-	3.0344e+0(5.71e-2	2) =	- 2.4410e+0(3.52e-2)- - 3.4846e+0(2.45e-2)-	1.8542e-1(5.96e-2)
		1000	4.4681e-1(1.40e-2)-	6.8229e+2(5.50e+1)-	8.2477e-1(2.42e-1)-	1.9563e-1(3.70e-4)≈	1.8812e-1(4.10e-3)		10	500	3.8106e+0(8.24e-2)-	3.1112e+0(5.04e-2	2)- 1.6148e+0(5.53e-1)	 3.5264e+0(9.75e-2) 	4.8685e-1(5.49e-2)
DTLZ3		100	8.0019e-1(4.87e-2)-	8.2193e+2(1.37e+2)-	6.3652e+0(3.88e+0)-	5.0747e-1(3.77e-2)≈	5.5352e-1(3.56e-2)	UF9		1000	3.9456e+0(7.23e-2)-	3.1454e+0(4.20e-2	2)- 1.9861e+0(1.27e+0)	- 3.5070e+0(1.17e-1)-	6.9330e-1(1.16e-1)
	10	500	1.2941e+2(2.78e+2)-	2.2891e+3(1.35e+2)-	9.4498e+0(4.57e+0)-	5.2820e-1(9.88e-2)~	5.5126e-1(1.66e-2)			100	2.9851e-1(1.58e-2)-	2.2030e-1(9.19e-2	e)- 5.3546e-1(1.39e-1)-	- 4.3517e-2(2.50e-6)+	5.7008e-2(8.91e-3)
		1000	2 5643e+2(3 27e+2)-	4 4071e+3(1 91e+2)-	4 4621e+0(2 34e+0)-	4 77280-1(4 260-2)+	5.4964e-1(1.85e-2)		3	500	3.1975e-1(2.92e-2)-	3.1029e-1(7.27e-2	e)- 4.6017e-1(1.19e-1)-	4.3516e-2(9.76e-7)+	5.3626e-2(6.94e-3)
		1000	6 2598o 1/2 50o 1)	2 72080 1/1 210 1) 1	2 14240 1(4 220 2) 1	2.6057c 1(1.20c-2)+	2.6411a 1(1.55a 2)			1000	3.0557e-1(8.39e-2)-	3.7850e-1(4.21e-2	e) = 5.3607e-1(8.03e-2)	4.3516e-2(7.00e-7)+	5.1231e-2(4.50e-3)
	F	500	5.25080-1(2.500-1)-	2.7298e-1(1.51e-1)+	2.14540-1(4.550-5)+	2.6957e-1(1.29e-1)≈	2.0411e-1(1.55e-2)			100	5.9354e-1(1.50e-1)-	3.3482e-1(8.13e-2	2)— 7.5510e-1(1.49e-1)-		1.6632e-1(1.45e-2)
	3	500	5.2/2/e-1(1.18e-1)-	1.9490e-1(2.64e-5)+	2.15/16-1(9.9/6-3)+	3.4421€-1(1.29€-1)≈	2.7256e-1(2.46e-2)	UF10	3	500	6.3119e-1(1.92e-1)-	3.6779e-1(8.36e-2	2)— 1.3142e+0(8.69e-1)	- 1.0158e-1(8.55e-4)+	1.5547e-1(4.99e-3)
DTLZ4		1000	4.3848e-1(1.80e-1)-	2.2829e-1(1.09e-1)≈	2.1380e-1(4.21e-3)+	3.4420e-1(1.29e-1)≈	2.7071e-1(2.36e-2)			1000	5.6232e-1(2.48e-1)-	4.2148e-1(1.10e-1)- 9.1794e-1(1.35e-1)-	1.0277e-1(1.01e-3)+	1.6924e-1(9.48e-3)
		100	8.3550e-1(3.18e-2)-	4.2123e-1(1.95e-4)+	4.2764e-1(2.53e-2)+	4.3772e-1(3.33e-2)+	5.0820e-1(2.47e-2)	LSMOP1	3.6	6215e-1(2.77e-2)- 2.0411	le-1(3.05e-3)-	6.5295e-1(3.88e-1)-	1.7219e-1(7.47e-3)-	1.5151e-1(9.99e-3)
	10	500	8.3052e-1(2.93e-2)-	4.2154e-1(1.02e-4)+	4.0104e-1(4.57e-3)+	4.1970e-1(5.83e-5)+	5.2786e-1(3.98e-3)	LSMOP2	2.4	4541e-1(8.98e-4)- 1.4727	7e-1(1.67e-3)—	2.3724e-1(7.06e-2)-	1.4212e-1(2.16e-3)-	1.2644e-1(1.45e-3)
		1000	8.2082e-1(2.40e-2)-	4.2173e-1(7.92e-5)+	4.0081e-1(2.61e-3)+	4.5695e-1(3.18e-2)+	5.2345e-1(9.26e-3)	LSMOP3	7.0	0884e-1(4.00e-2)- 4.4176	5e-1(1.30e-1)≈	7.0241e-1(9.37e-2)-	6.9024e-1(4.55e-2)-	4.1242e-1(4.68e-2)
		100	5.2987e-1(2.57e-2)-	5.2849e-1(1.56e-1)-	2.4790e-1(1.14e-2)+	5.2044e-1(2.51e-6)-	3.0913e-1(1.10e-2)	LSMOP4	2.7	7326e-1(4.55e-3)- 1.8222	2e-1(9.13e-3)-	6.0172e-1(1.44e-1)-	1.5548e-1(4.40e-3)≈	1.5585e-1(2.04e-3)
	5	500	5.1542e-1(3.73e-7)-	2.3928e+0(1.60e-1)-	2.3191e-1(7.58e-3)+	5.2043e-1(4.57e-7)-	3.2032e-1(8.53e-3)	LSMOP5	5.7	7900e-1(6.32e-2)- 3.2983	3e-1(1.23e-1)-	1.1584e+0(4.06e-1)-	3.8667e-1(3.92e-2)-	2.6932e-1(1.65e-2)
DTI 77		1000	5.2120e-1(1.78e-2)-	2.6633e+0(1.38e-1)-	2.3408e-1(1.44e-2)+	5.2043e-1(7.54e-7)-	3.1051e-1(7.59e-3)	LSMOP6	5 1.2	2119e+0	(2.44e-1)+ 1.1094	e+0(1.22e-1)+	1.8486e+0(1.39e+0)+	2.0992e+0(1.79e-1)+	1.3820e+4(3.91e+3)
UTLL		100	4.4020e+0(1.37e+0)-	4.6684e+0(4.21e-1)-	1.3854e+0(3.48e-2)-	1.6385e+0(7.84e-2)-	1.0749e+0(6.40e-3)	LSMOP7	9.9	9083e-1(1.53e-1)+ 1.0033	e+0(2.11e-1)+	1.2275e+1(9.00e+0)-	9.1631e-1(2.81e-2)+	1.3542e+0(3.00e-1)
	10	500	5.3581e+0(6.94e-1)-	1.1875e+1(8.36e-1)-	1.3572e+0(1.65e-2)-	1.6320e+0(1.02e-1)-	1.0752e+0(3.29e-3)	LSMOP8	5.1	1604e-1(1.67e-2)- 2.9337	7e-1(1.02e-2)-	4.3832e-1(5.81e-3)-	3.0537e-1(6.19e-2)-	2.3022e-1(7.57e-3)
		1000	5.7150e+0(2.69e-1)-	1.5027e+1(9.39e-1)-	1.3300e+0(9.50e-3)-	1.5249e+0(4.16e-2)-	1.0781e+0(4.58e-3)	LSMOP9	1.0	0600e+0	(2.31e-1) - 2.3568	e+0(8.52e-2)-	1.3535e+0(6.62e-1)≈	6.5805e-1(1.13e-1)≈	6.1163e-1(3.55e-2)
+/	-/≈		0/30/0	8/21/1	12/18/0	6/13/11		+/-/≈	5	2/7	7/0	2/6/1	1/7/1	2/5/2	(/

'+','-' and 'æ' indicate that the result is significantly better, significantly worse and statistically similar to that of LMEA, respectively.

IGD results obtained by the compared algorithms

✓ Effective for large-scale MaOPs

- Background
- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

Existing MOEAs are inefficient in terms of function evaluation consumption and computation time.

- □ Reformulate the LSMOP into SOP
 - ✓ Weight variable association
 - ✓ Subproblem construction
 - ✓ Objective space reduction
- □ Single-objective optimization
 - ✓ Optimize the weight variable
 - \checkmark Collect the solution during the optimization
- □ Spread the population over the entire PS
 - ✓ Start from quasi-optimal solutions

Algorit	hm I The main framework of the proposed LSMOF.
Input:	Z (original LSMOP), FE_{max} (total FEs), Alg (em-
bed	lded MOEA), N (population size for Alg), r (number
of	reference solutions), tr (threshold).
Outpu	t: P (final population).
1: $P \leftarrow$	\leftarrow Initialization (N, Z)
2: /**	***********First Stage*********/
3: wh	ile $t \leq tr \times FE_{max}$ do
4: 2	$Z' \leftarrow \text{Problem}_\text{Reformulation}(P, r, Z)$
5:	$A, \Delta t \leftarrow \text{Single_Objective_Optimization}(Z')$
6: <i>I</i>	$P \leftarrow \text{Environmental}_\text{Selection}(A \bigcup P, N)$
7: t	$\leftarrow t + \Delta t$
8: end	l
9: /**	******Second Stage*******/
10: <i>P</i> ∢	\leftarrow Embedded_MOEA (P, N, Alg, Z)

Reformulating the LSMOP into SOP for reducing the number of decision variables and objectives. x_2 The Pareto optimal set

- Reformulate the LSMOP
 - ✓ Select several reference solutions
 - Generate two reference directions for each solution in the decision space
 - Assign each direction a weight variable (denote the distance to the PS)
 - Optimize all the weight variables simultaneously (measure the quality of the solution set by an indicator)

An example of the weight variable association

Accelerating large-scale multiobjective optimization

General performance on LSMOP using 50,000 FEs Convergence acceleration

Problem	M	D	NSGA-II	LS-NSGA-II	MOEA/D-DE	LS-MOEA/D-DE	SMS-EMOA	LS-SMS-EMOA	CMOPSO	LS-CMOPSO
		200	9.17E-1(2.54E-1)-	5.78E-1(5.32E-2)	3.59E-1(1.85E-2)-	2.13E-1(3.44E-2)	6.24E-1(6.25E-2)-	5.30E-1(6.69E-2)	4.38E-1(2.32E-1)+	5.75E-1(4.58E-2)
	2	500	2.73E+0(2.77E-1)-	6.14E-1(2.54E-2)	1.07E+0(9.70E-2)-	3.10E-1(3.44E-2)	2.09E+0(5.51E-1)-	5.98E-1(3.35E-2)	1.50E+0(1.61E-1)-	6.18E-1(2.35E-2)
		1000	4.21E+0(2.70E-1)-	6.37E-1(1.97E-2)	1.64E+0(1.17E-1)-	4.26E-1(5.07E-2)	3.72E+0(2.83E-1)-	6.22E-1(2.66E-2)	2.50E+0(1.31E-1)-	6.37E-1(1.99E-2)
LSMOP1		200	2.08E+0(2.12E-1)-	5.24E-1(1.35E-2)	1.57E+0(1.56E-1)-	5.26E-1(3.84E-2)	4.58E-1(3.02E-2)+	5.04E-1(1.13E-2)	2.12E+0(3.42E-1)-	5.20E-1(2.66E-2)
	3	500	5.05E+0(5.73E-1)-	5.96E-1(1.08E-2)	1.80E+0(1.59E-1)-	6.54E-1(4.31E-2)	2.94E+0(3.50E-1)-	5.84E-1(4.14E-2)	4.23E+0(5.58E-1)-	6.16E-1(1.55E-2)
		1000	6.93E+0(6.64E-1)-	6.33E-1(1.34E-2)	1.86E+0(1.97E-1)-	6.68E-1(6.41E-2)	6.29E+0(3.95E-1)-	7.09E-1(1.12E-1)	6.80E+0(5.29E-1)-	6.94E-1(2.13E-2)
		200	1.02E-1(2.93E-3)-	3.85E-2(1.08E-3)	9.64E-2(2.38E-3)-	2.71E-2(1.54E-3)	9.19E-2(2.90E-3)-	3.55E-2(2.01E-3)	9.82E-2(2.50E-3)-	3.70E-2(1.14E-3)
	2	500	6.20E-2(1.16E-3)-	2.32E-2(6.90E-4)	4.89E-2(1.68E-3)-	1.38E-2(1.17E-3)	5.41E-2(1.21E-3)-	1.65E-2(4.67E-4)	5.54E-2(1.42E-3)-	2.14E-2(6.83E-4)
	-	1000	3.70E-2(3.16E-4)-	1.81E-2(5.41E-4)	2.75E-2(9.26E-4)-	9.15E-3(1.27E-3)	3.30E-2(3.87E-4)-	9.73E-3(2.00E-4)	3.72E-2(7.32E-4)-	1.54E-2(8.72E-4)
LSMOP2		200	1.27E-1(4.79E-3)+	1.38E-1(2.76E-3)	1.05E-1(2.83E-3)-	8.51E-2(2.95E-3)	1.23E-1(1.97E-3)+	1.25E-1(5.01E-3)	1.21E-1(9.02E-4)-	1.17E-1(2.27E-3)
	3	500	8 25E-2(5 49E-3)+	8.71E-2(3.20E-3)	7.41E-2(8.49E-4)-	6 55E-2(0 76E-4)	$7.98F_{-}2(2.11F_{-}3) \pm$	8 14E-2(2 98E-3)	6 83E-2(2 81E-4)+	7.20E-2(9.77E-3)
	5	1000	$6.72F_{-2}(3.63F_{-3}) +$	7.05E-2(3.08E-3)	6 35E-2(2 54E-4)-	5 07E-2(4 12E-4)	6.55E-2(2.63E-3)+	6.64E-2(1.65E-3)	$5.18F_{-2}(3.66F_{-4}) +$	5 22E-2(5 00E-4)
		200	$1.42E \pm 1(2.56E \pm 0) =$	1.54E+0(1.43E-3)	5 82E+0(103E+0)-	1.53E+0(5.83E-3)	$1.73E \pm 1(2.63E \pm 0) =$	1.54E+0(1.12E-3)	$3.85E\pm0(6.01E-1)$	1.52E+0(3.30E-3)
	2	500	$1.92E \pm 1(1.62E \pm 0) =$	1.57E+0(1.05E-3)	1 33E+1(1 20E+0)-	1.55E+0(1.41E-3)	2 21E+1(1 26E+0)-	1.57E+0(0.70E-4)	2.86E+1(1.24E+0)-	1.56E+0(2.01E-3)
	-	1000	2.22E+1(1.02E+0) =	1.57E+0(2.28E-4)	1.83E+1(1.29E+0)=	1.57E+0(3.30E-4)	2.21E+1(1.20E+0)=	1.57E+0(2.31E-4)	2.00E+1(1.24E+0)= 3.06E+1(1.06E+0)=	1.57E+0(2.01E-5)
LSMOP3		200	2.22E+1(1.12E+0)- 7.20E+0(1.27E+0)	R 40E 1(2 SIE 2)	7.77E+0(0.45E-1)	8 27E 1(4 68E 2)	2.55E+1(1.04E+0)-	2 24E 1/2 15E 2)	0.46E+0(8.41E-1)	8 60E 1/2 45E 2)
2011010	3	500	1.53E+1(2.62E+0)-	8.40E-1(2.31E-2) 8.50E-1(3.26E-3)	1.00E+1(7.02E-1)-	8.10E-1(4.00E-2) 8.10E-1(4.70E-2)	2.03E+0(1.03E-1)- 7.81E+0(1.30E+0)-	0.24E-1(5.15E-2) 1.60E+0(3.00E+0)	9.40E+0(0.41E-1)-	8.60E-1(2.45E-5) 8.61E-1(1.14E-6)
	3	1000	1.05E+1(2.02E+0)-	8.59E-1(5.20E-5) 8.61E 1/7 02E 5)	1.00E+1(5.72E-1)	8.19E-1(4.79E-2) 8.41E 1/2.55E 2)	1.61E+0(1.50E+0)-	5.07E+0(1.62E+1)	1.51E+1(8.51E-1)-	8.61E-1(1.14E-0) 8.61E-1(1.14E-6)
		200	1.95E+1(5.27E+0)-	8.01E-1(7.05E-3)	1.08E+1(3.75E-1)-	6.41E-1(5.55E-2)	1.05E+1(3.24E+0)-	0.65E 2(1.66E 2)	1.49E+1(7.60E-1)-	0.41E-1(1.14E-0)
	2	200	0.71E-1(3.96E-3)-	9.87E-2(1.09E-3) 5.05E-2(1.14E-2)	0.19E-2(1.09E-2)	0.99E-2(0.41E-3)	1.41E-1(2.25E-5)-	9.05E-2(1.50E-3)	1.51E-1(2.45E-5)-	9.41E-2(2.27E-3) 5.0(E-2(0.20E-4)
	2	500	9./1E-2(2.4/E-3)-	3.05E-2(1.14E-3) 2.20E-2(0.40E-4)	9.18E-2(1.28E-3)-	4.18E-2(2.52E-5)	7.84E-2(1.17E-5)-	4.00E-2(7.39E-4)	9.00E-2(2.21E-3)-	3.00E-2(9.20E-4)
LSMOD4		1000	6.26E-2(9.58E-4)-	3.20E-2(9.49E-4)	5.42E-2(9.08E-4)-	2.42E-2(1.43E-3)	4.83E-2(3.52E-4)-	2.50E-2(4.18E-4)	6.50E-2(1.08E-5)-	3.12E-2(9.27E-4)
Lamory	2	200	3.20E-1(6.48E-3)-	2.92E-1(8.37E-3)	2.8/E-1(6.01E-3)-	2.31E-1(8.50E-3)	2.9/E-1(1.09E-2)-	2.73E-1(1.30E-2)	3.2/E-1(1.05E-2)-	2./2E-1(/.12E-3)
	3	500	1.93E-1(4.24E-3)+	2.13E-1(4./2E-3)	1.65E-1(1.76E-3)-	1.29E-1(3.44E-3)	1.90E-1(4.21E-3)-	1.85E-1(9.10E-3)	1.94E-1(2.27E-3)-	1.08E-1(4./4E-3)
		1000	1.29E-1(4.51E-3)+	1.41E-1(3.63E-3)	1.09E-1(1.50E-3)-	8.83E-2(2.32E-3)	1.26E-1(2.24E-3)+	1.32E-1(2.59E-3)	1.18E-1(1.42E-3)-	1.10E-1(1.88E-3)
		200	2.18E+0(4.38E-1)-	7.42E-1(1.14E-6)	6.40E-1(4.20E-2)+	7.42E-1(1.14E-6)	1.59E+0(4.72E-1)-	7.42E-1(1.14E-6)	6.33E-1(1.53E-1)+	7.42E-1(1.14E-6)
	2	500	8.21E+0(4.68E-1)-	7.42E-1(1.14E-6)	2.30E+0(2.69E-1)-	7.42E-1(1.14E-6)	7.33E+0(9.18E-1)-	7.42E-1(1.14E-6)	5.02E+0(3.62E-1)-	7.42E-1(1.14E-6)
LEMORE		1000	1.12E+1(8.52E-1)-	7.42E-1(1.14E-6)	3.16E+0(1.86E-1)-	7.42E-1(1.14E-6)	1.10E+1(8.88E-1)-	7.42E-1(1.14E-6)	7.31E+0(5.20E-1)-	7.42E-1(1.14E-6)
LSMOP5		200	5.19E+0(5.61E-1)-	4.88E-1(5.13E-2)	2.79E+0(4.11E-1)-	4.99E-1(4.33E-2)	1.00E+0(3.95E-1)-	6.14E-1(9.91E-2)	3.35E+0(1.80E+0)-	6.30E-1(1.69E-1)
	3	500	1.17E+1(9.56E-1)-	5.35E-1(1.23E-2)	3.59E+0(3.91E-1)-	5.41E-1(2.47E-3)	9.42E+0(1.15E+0)-	9.51E-1(2.57E-1)	1.16E+1(1.21E+0)-	7.3/E-1(2.02E-1)
		1000	1.62E+1(8.65E-1)-	5.49E-1(2.83E-2)	3.78E+0(2.09E-1)-	5.42E-1(1.60E-4)	1.75E+1(2.25E+0)-	9.02E-1(2.06E-2)	1.47E+1(1.77E+0)-	8.04E-1(1.98E-1)
		200	8.97E-1(8.91E-3)-	3.59E-1(2.37E-3)	7.59E-1(5.31E-2)-	3.32E-1(1.64E-2)	9.00E-1(8.66E-3)-	3.58E-1(4.24E-3)	9.60E-1(6.99E-1)-	3.58E-1(1.68E-3)
	2	500	8.09E-1(1.76E-3)-	3.22E-1(4.69E-4)	7.34E-1(8.50E-2)-	2.87E-1(3.04E-2)	8.08E-1(7.01E-4)-	3.22E-1(1.28E-3)	7.80E-1(6.42E-2)-	3.22E-1(2.63E-4)
		1000	7.75E-1(4.05E-4)-	3.14E-1(6.41E-4)	6.98E-1(1.23E-1)-	2.87E-1(2.74E-2)	7.71E-1(1.61E-2)-	3.14E-1(7.02E-4)	7.35E-1(8.16E-2)-	3.14E-1(1.70E-4)
LSMOP6		200	9.64E+1(1.55E+2)-	6.97E-1(1.63E-2)	3.05E+0(1.30E+0)-	6.76E-1(2.25E-2)	3.07E+0(1.03E+0)-	1.62E+0(9.13E-2)	5.13E+1(8.58E+1)-	8.37E-1(3.69E-1)
	3	500	3.76E+3(1.38E+3)-	7.42E-1(1.70E-2)	2.21E+1(1.72E+1)-	6.78E-1(4.09E-2)	8.44E+1(5.20E+1)-	2.31E+0(1.27E+0)	2.60E+3(1.05E+3)-	7.37E-1(2.11E-2)
		1000	1.24E+4(2.36E+3)-	7.45E-1(2.06E-2)	1.80E+2(8.33E+1)-	7.00E-1(1.47E-2)	1.61E+3(4.90E+2)-	2.05E+0(4.84E-1)	4.95E+3(2.10E+3)-	8.87E-1(6.58E-1)
		200	6.15E+1(8.08E+1)-	1.48E+0(2.65E-3)	4.04E+0(7.20E-1)-	1.48E+0(1.82E-3)	2.02E+1(5.37E+1)-	1.48E+0(1.71E-3)	2.52E+0(6.97E-1)-	1.47E+0(3.99E-3)
	2	500	1.45E+3(1.98E+3)-	1.50E+0(8.71E-4)	2.88E+1(4.97E+0)-	1.50E+0(6.11E-4)	4.74E+2(4.38E+2)-	1.50E+0(1.26E-3)	8.29E+1(1.36E+2)-	1.50E+0(1.35E-3)
		1000	8.24E+3(3.61E+3)-	1.51E+0(4.22E-4)	2.20E+2(4.85E+1)-	1.51E+0(3.19E-4)	4.15E+3(1.90E+3)-	1.51E+0(7.46E-4)	2.05E+3(5.98E+2)-	1.51E+0(7.37E-4)
LSMOP7		200	1.78E+0(8.52E-2)-	9.67E-1(2.51E-2)	1.17E+0(6.62E-2)-	8.97E-1(3.29E-2)	3.93E+1(1.85E+1)-	1.05E+0(1.71E-1)	1.89E+0(8.59E-2)-	1.04E+0(7.82E-2)
	3	500	1.29E+0(1.30E-2)-	8.96E-1(6.81E-3)	1.15E+0(9.17E-3)-	8.51E-1(3.19E-2)	3.98E+3(1.30E+3)-	1.03E+0(9.99E-2)	5.11E+1(2.23E+2)-	9.47E-1(7.64E-2)
		1000	1.10E+0(2.50E-3)-	8.68E-1(1.13E-2)	1.05E+0(2.96E-3)-	8.23E-1(6.78E-2)	3.17E+4(9.76E+3)-	9.75E-1(8.31E-2)	9.32E+2(3.64E+3)-	9.24E-1(8.98E-2)
		200	8.88E-1(5.54E-2)-	7.42E-1(1.14E-6)	3.79E-1(1.14E-1)+	7.40E-1(7.96E-3)	8.49E-1(6.41E-2)-	7.42E-1(1.14E-6)	6.66E-1(1.93E-1)≈	7.42E-1(1.14E-6)
	2	500	3.40E+0(2.81E-1)-	7.42E-1(1.14E-6)	6.34E-1(3.22E-2)+	7.42E-1(1.14E-6)	2.98E+0(3.05E-1)-	7.42E-1(1.14E-6)	2.84E+0(2.05E-1)-	7.42E-1(1.14E-6)
		1000	6.83E+0(4.47E-1)-	7.42E-1(1.14E-6)	1.26E+0(8.71E-2)-	7.42E-1(1.14E-6)	6.23E+0(3.12E-1)-	7.42E-1(1.14E-6)	4.89E+0(2.28E-1)-	7.42E-1(1.14E-6)
LSMOP8		200	5.70E-1(7.28E-2)-	3.63E-1(1.38E-2)	7.56E-1(1.02E-1)-	3.37E-1(2.79E-2)	4.42E-1(5.72E-2)+	5.34E-1(4.84E-2)	3.39E-1(4.42E-2)≈	3.56E-1(1.07E-2)
	3	500	9.64E-1(1.12E-2)-	3.53E-1(4.70E-2)	5.51E-1(6.05E-3)-	3.27E-1(3.14E-2)	1.74E+0(1.41E+0)-	5.40E-1(1.13E-2)	8.36E-1(9.70E-2)-	3.16E-1(3.95E-2)
		1000	9.52E-1(1.82E-2)-	3.60E-1(4.27E-2)	5.35E-1(5.24E-3)-	3.02E-1(4.71E-2)	2.43E+0(3.19E+0)-	5.35E-1(2.17E-2)	9.59E-1(2.61E-4)-	3.01E-1(2.93E-2)
		200	1.78E+0(4.84E-2)-	8.10E-1(1.14E-6)	4.44E-1(1.06E-2)+	8.10E-1(1.14E-6)	1.76E+0(2.74E-2)-	8.10E-1(2.25E-3)	1.54E+0(1.91E-1)-	8.10E-1(1.14E-6)
	2	500	1.38E+0(4.94E-2)-	8.10E-1(6.01E-4)	4.93E-1(2.47E-2)+	8.09E-1(8.96E-4)	1.32E+0(3.73E-2)-	8.09E-1(4.53E-4)	1.23E+0(7.34E-3)-	8.09E-1(8.64E-4)
	-	1000	4.80E+0(6.96E-1)-	8.08E-1(1.49E-3)	9.43E-1(1.22E-1)-	8.09E-1(1.88E-3)	4.02E+0(6.33E-1)-	8.08E-1(1.08E-3)	1.22E+0(8.51E-2)-	8.07E-1(1.29E-3)
LSMOP9		200	3.66E+0(4.05E-1)-	1.54E+0(4.56E-6)	1.29E+0(3.37E-1)ex	1.15E+0(1.46E-3)	3.60E+0(7.43E-2)-	1.37E+0(5.29E-2)	2.54E+0(1.78E-1)-	1.15E+0(4.00E-4)
	3	500	9.17E+0(1.32E+0)-	1.54E+0(4.56E-6)	5.25E+0(6.43E-1)-	1.16E+0(7.52E-3)	7.20E+0(8.65E-1)-	1.43E+0(1.42E-1)	3.23E+0(7.16E-1)-	1.15E+0(2.89E-4)
		1000	2.04E+1(1.53E+0)-	1.38E+0(1.97E-1)	1.33E+1(1.27E+0)-	1.16E+0(1.14E-2)	2.34E+1(2.39E+0)-	1.17E+0(6.76E-2)	2.59E+1(2.44E+0)-	1.15E+0(7.36E-4)
+/	-/≈		5/49/0		5/48/1		6/48/0		4/48/2	

IGD results obtained by the original MOEAs and their accelerated versions

Problem	Μ	D	MOEA/DVA	WOF-NSGA-II	LS-NSGA-II
LSMOP1	2	200 500	8.66E+0(8.04E-1)- 1.91E+1(1.00E+0)- 2.39E+1(7.84E-1)-	6.30E-1(9.36E-2)- 6.58E-1(6.11E-2)- 6.79E-1(4.22E-2)-	5.78E-1(5.32E-2) 6.14E-1(2.54E-2) 6.37E-1(1.97E-2)
	3	200 500 1000	6.26E+0(4.62E-1)- 9.42E+0(2.89E-1)- 1.08E+1(3.22E-1)-	6.95E-1(1.32E-1)- 7.09E-1(8.36E-2)- 8.01E-1(7.05E-2)-	5.24E-1(1.35E-2) 5.96E-1(1.08E-2) 6.33E-1(1.34E-2)
LSMOP2	2	200 500 1000	1.51E-1(6.75E-4)- 7.27E-2(2.30E-4)- 4.04E-2(3.87E-4)-	7.46E-2(4.63E-4)- 3.30E-2(3.91E-4)- 1.92E-2(3.40E-4)-	3.85E-2(1.08E-3) 2.32E-2(6.90E-4) 1.81E-2(5.41E-4)
	3	200 500 1000	1.23E-1(2.61E-3)+ 7.89E-2(2.63E-3)+ 6.48E-2(2.46E-3)+	1.36E-1(3.84E-3)≈ 8.54E-2(3.82E-3)≈ 7.00E-2(4.28E-3)≈	1.38E-1(2.76E-3) 8.71E-2(3.29E-3) 7.05E-2(3.08E-3)
LSMOP3	2	200 500 1000	1.71E+1(1.30E+0)- 2.87E+1(8.26E-1)- 3.36E+1(6.07E-1)-	1.50E+0(6.88E-2)≈ 1.57E+0(1.47E-3)− 1.58E+0(1.61E-3)−	1.54E+0(1.43E-3) 1.57E+0(1.05E-3) 1.57E+0(2.28E-4)
	3	200 500 1000	2.30E+1(3.53E+0)- 3.60E+1(2.95E+0)- 4.02E+1(2.09E+0)-	8.61E-1(3.38E-4)- 8.61E-1(1.30E-4)- 8.61E-1(7.28E-4)≈	8.40E-1(2.51E-2) 8.59E-1(3.26E-3) 8.61E-1(7.03E-5)
LSMOP4	2	200 500 1000	6.56E-1(9.76E-3)- 5.44E-1(1.90E-3)- 4.61E-1(6.97E-4)-	1.33E-1(1.51E-2)- 8.74E-2(6.83E-3)- 5.99E-2(5.57E-3)-	9.87E-2(1.69E-3) 5.05E-2(1.14E-3) 3.20E-2(9.49E-4)
	3	200 500 1000	3.26E-1(2.31E-3)- 1.94E-1(5.71E-4)+ 1.20E-1(1.96E-4)+	3.15E-1(9.10E-3)− 2.14E-1(6.87E-3)≈ 1.39E-1(5.80E-3)≈	2.92E-1(8.37E-3) 2.13E-1(4.72E-3) 1.41E-1(3.63E-3)
LSMOP5	2	200 500 1000	1.42E+1(6.21E-1)- 2.09E+1(5.02E-1)- 2.41E+1(3.40E-1)-	7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)≈	7.42E-1(1.14E-6) 7.42E-1(1.14E-6) 7.42E-1(1.14E-6)
	3	200 500 1000	1.17E+1(9.27E-1)- 1.70E+1(6.15E-1)- 1.91E+1(5.97E-1)-	5.41E-1(1.02E-3)- 5.41E-1(4.66E-5)- 5.41E-1(7.27E-5)≈	4.88E-1(5.13E-2) 5.35E-1(1.23E-2) 5.49E-1(2.83E-2)
LSMOP6	2	200 500 1000	7.36E+2(6.12E+2)- 2.24E+3(2.14E+3)- 2.99E+3(2.33E+3)-	6.42E-1(7.36E-2)- 7.33E-1(1.76E-1)- 6.82E-1(9.03E-4)-	3.59E-1(2.37E-3) 3.22E-1(4.69E-4) 3.14E-1(6.41E-4)
	3	200 500 1000	1.77E+4(3.58E+3)- 3.05E+4(6.34E+3)- 3.68E+4(7.07E+3)-	1.22E+0(3.15E-3)- 1.29E+0(2.01E-3)- 1.31E+0(1.31E-3)-	6.97E-1(1.63E-2) 7.42E-1(1.70E-2) 7.45E-1(2.06E-2)
LSMOP7	2	200 500 1000	5.58E+4(6.03E+3)- 1.06E+5(5.12E+3)- 1.33E+5(4.14E+3)-	1.48E+0(2.34E-3)- 1.51E+0(1.18E-3)- 1.51E+0(1.19E-3)-	1.48E+0(2.65E-3) 1.50E+0(8.71E-4) 1.51E+0(4.22E-4)
	3	200 500 1000	1.80E+0(3.92E-2)- 1.27E+0(9.73E-3)- 1.10E+0(2.56E-3)-	9.78E-1(4.70E-2)≈ 9.48E-1(1.26E-1)− 9.23E-1(1.38E-1)−	9.67E-1(2.51E-2) 8.96E-1(6.81E-3) 8.68E-1(1.13E-2)
LSMOP8	2	200 500 1000	1.40E+1(8.86E-1)- 2.11E+1(4.21E-1)- 2.39E+1(4.73E-1)-	7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)≈ 7.42E-1(1.14E-6)≈	7.42E-1(1.14E-6) 7.42E-1(1.14E-6) 7.42E-1(1.14E-6)
	3	200 500 1000	6.69E-1(1.07E-2)- 6.51E-1(6.13E-3)- 6.49E-1(4.56E-3)-	3.65E-1(4.56E-3)- 3.55E-1(1.59E-2)- 3.56E-1(9.05E-3)+	3.63E-1(1.38E-2) 3.53E-1(4.70E-2) 3.60E-1(4.27E-2)
LSMOP9	2	200 500 1000	2.26E+1(1.92E+0)- 4.32E+1(1.36E+0)- 5.24E+1(1.03E+0)-	8.10E-1(1.14E-6)≈ 8.10E-1(3.21E-4)≈ 8.09E-1(4.10E-4)−	8.10E-1(1.14E-6) 8.10E-1(6.01E-4) 8.08E-1(1.49E-3)
		200	6.70E+1(5.47E+0)-	7.74E-1(3.80E-1)+	1.54E+0(4.56E-6)

Comparison with the-state-of-the-art algorithms

Accelerating large-scale multiobjective optimization

General performance on LSMOP using 50,000 FEs

Computation time acceleration

The computation time used by the original MOEAs and their accelerated versions

- \checkmark Accelerate the convergence rate
- ✓ Accelerate the computation time

Comparison with the-state-of-the-art algorithms

More results on DTLZ and WFG using 50,000 FEs

Proble	n M	D	NSGA-II	LS-NSGA-II	MOEA/D-DE	LS-MOEA/D-DE	SMS-EMOA	LS-SMS-EMOA	CMOPSO	LS-CMOPSO	Problem	M D	NSGA-II	LS-NSGA-II	MOEA/D-DE	LS-MOEA/D-DE	SMS-EMOA	LS-SMS-EMOA	CMOPSO	LS-CMOPSO
		200	4.97E+2(2.94E+1)-	2.40E-3(3.18E-4)	6.34E+2(2.72E+2)-	2.61E-3(1.25E-3)	4.88E+2(2.69E+1)-	1.91E-3(2.42E-4)	1.25E+3(1.12E+2)-	1.84E-3(9.18E-6)		20	0 8.79E-1(1.61E-2)+	1.27E+0(1.25E-2)	1.27E+0(3.60E-3)-	1.26E+0(1.15E-2)	8.56E-1(3.42E-2)+	1.20E+0(4.41E-2)	1.27E+0(4.22E-3)+	1.27E+0(2.34E-2)
	2	500	2.03E+3(6.13E+1)-	2 50F-3(2 66F-4)	1.88E+3(7.67E+2)-	2.44E-3(1.15E-3)	1.90E+3(7.49E+1) -	2.24E-3(1.05E-3)	3.68E+3(1.48E+2) =	1.84E-3(1.17E-5)		2 50	0 1.12E+0(1.00E-2)+	1.23E+0(1.25E-2)	1.27E+0(2.38E-3)-	1.26E+0(1.09E-2)	1.11E+0(2.81E-2)+	1.31E+0(3.21E-2)	1.28E+0(3.51E-3)≈	1.28E+0(1.86E-2)
	~	1000	6 44E+2(2 14E+2)	2 51E 2(2 17E 4)	4.55E+2(1.25E+2)	2 SOE 2(5 S2E 2)	570E+2(217E+2)	2.17E 2(7.14E 4)	8 81E - 2(2 02E - 2)	1.84E 2(1.10E 5)	WEGI	- 10	1.21E+0(4.62E-3)+	1.20E+0(1.40E-2)	1.28E+0(1.95E-3)-	1.278+0(5.738-3)	1.20E+0(1.48E+2)+	1.33E+0(3.06E-2)	1.28E+0(3.13E-3)®	1.28E+0(1.23E-2)
DTI 7		1000	0.44E+3(3.14E+2)-	2.00E 2(1.70E 7)	4.55E+5(1.25E+5)-	2.50E-2(5.52E-2)	5.70E+5(2.17E+2)-	2.17E-3(7.14E-4)	0.01E+3(2.92E+2)-	1.725 1/7 025 2	mon	3 50	0 1.30E+0(2.11E-2)+	1.46E+0(3.45E-2)	1.57E+0(2.00E-2)+ 1.57E+0(3.30E-2)+	1.62E+0(0.73E-2)	1.40E+0(1.41E-2)+ 1.48E+0(7.00E-3)+	1.49E+0(3.13E-2) 1.51E+0(2.06E-2)	1.54E+0(1.05E-2)+ 1.53E+0(1.83E-2)+	1.5/E+0(1./0E-2) 1.56E+0(1.03E-2)
DILL		200	8.22E+2(8.97E+1)-	3.00E-2(1./8E-/)	3.54E+2(2.32E+2)-	2.9/E-2(2.48E-3)	4.80E+2(3.27E+1)-	5.14E-2(1.49E-2)	2.32E+3(2.36E+2)-	1.72E-1(7.83E-2)		100	140E+0(1.03E-2)+ 00 140E+0(1.09E-2)~	1.49E+0(1.33E-2)	1.57E+0(1.77E-2)=	1.61E+0(6.77E-2)	1.50E+0(7.52E-3)+	1.53E+0(1.72E-2)	1.53E+0(1.83E-2)+	1.57E+0(1.97E-2)
	3	500	4.54E+3(3.01E+2)-	3.05E-2(2.24E-3)	1.59E+3(5.46E+2)-	3.59E-2(2.01E-2)	2.05E+3(7.96E+1)-	5.02E-2(9.42E-3)	6.05E+3(5.64E+2)-	1.71E-1(7.72E-2)	<u></u>	20	0 1.43E-1(1.23E-2)-	7.66E-2(6.90E-2)	1.85E-1(1.18E-2)~	1.56E-1(5.71E-2)	1.46E-1(4.00E-2)-	2 90E-2(1 74E-2)	1.55E.1(1.38E.2)-	4 41E-2(2 79E-2)
		1000	1.54E+4(6.08E+2)-	3.10E-2(3.08E-3)	2.43E+3(1.38E+3)-	6.52E-2(4.72E-2)	7.75E+3(2.36E+2)-	6.83E-2(2.65E-2)	1.23E+4(8.44E+2)-	1.82E-1(6.99E-2)		2 50	0 2.03E-1(9.82E-3)-	4.73E-2(3.01E-2)	2.47E-1(1.09E-2)-	1.49E-1(3.70E-2)	2.05E-1(3.38E-2)-	5.16E-2(3.86E-2)	2.54E-1(9.34E-3)-	6.25E-2(4.25E-2)
		200	2.00E-2(3.56E-8)-	1.00E-2(1.78E-8)	6.56E-2(6.58E-3)-	2.38E-2(9.42E-3)	1.23E-2(8.61E-4) -	6.70E-3(6.37E-4)	1.28E-2(9.83E-4)-	7.70E-3(1.34E-3)		100	00 2.89E-1(4.51E-2)-	8.14E-2(4.62E-2)	2.86E-1(1.65E-2)-	1.59E-1(5.36E-2)	2.68E-1(4.22E-2)-	6.62E-2(3.85E-2)	3.18E-1(8.37E-3)-	8.83E-2(5.70E-2)
	2	500	7.00E-1(9.01E-2)-	1.00E-2(1.78E-8)	8 14E-1(1 69E-1)-	3 99E-2(2 05E-2)	5.00E-1(5.64E-2)-	6.02E-3(3.21E-4)	2 10E-1(2 54E-2)-	6 59F-3(7 16F-4)	WFG2	20	0 3.19E-1(4.09E-2)-	2.16E-1(3.13E-2)	6.37E-1(4.95E-2)-	4.40E-1(4.11E-2)	4.13E-1(1.10E-1)≈	3.96E-1(1.23E-1)	2.84E-1(1.28E-2)-	1.74E-1(1.61E-2)
	~	1000	8 52E (0(5 77E 1)	0 50E 3(2 24E 3)	3 35E (0(5 30E 1)	6 46E 2(5 10E 2)	8 47E (0(5 80E 1)	5 85E 2(2 67E 4)	2 02E 0(2 55E 1)	6 37E 3(5 81E 4)		3 50	0 4.09E-1(2.07E-2)-	2.28E-1(4.31E-2)	6.12E-1(6.06E-2)-	4.68E-1(5.26E-2)	5.02E-1(9.47E-2)-	3.58E-1(1.24E-1)	4.07E-1(1.29E-2)-	1.88E-1(3.28E-2)
DTI 7	, —	200	0.52E+0(5.77E-1)-	9.30E=3(2.24E=3)	5.35E+0(5.50E-1)-	0.40E-2(3.10E-2)	0.47E+0(5.69E-1)-	0.27E 2(4.45E 2)	3.92E+0(3.35E-1)-	0.57E-5(5.61E-4)		100	00 5.10E-1(2.37E-2)-	2.15E-1(2.66E-2)	6.37E-1(6.79E-2)-	4.55E-1(4.85E-2)	6.00E-1(8.40E-2)-	3.58E-1(1.25E-1)	4.76E-1(1.17E-2)-	1.83E-1(2.61E-2)
DILL	~	200	1.49E-1(1.55E-2)-	1.5/E-1(1.98E-1)	5.55E-1(7.65E-2)-	1.05E-1(1.6/E-2)	9.82E-2(5.61E-3)-	9.37E-2(4.45E-2)	2.23E-1(1.95E-2)-	2.00E-1(2.44E-1)		20	0 1.42E-1(1.64E-2)-	9.36E-2(4.06E-2)	2.43E-1(1.24E-2)-	1.09E-1(3.47E-2)	1.32E-1(8.63E-3)-	4.79E-2(1.34E-2)	1.37E-1(1.01E-2)-	7.49E-2(2.03E-2)
	3	500	2.2/E+0(2.53E-1)-	1.41E+0(3.43E+0)	2.04E+0(3.66E-1)-	1.33E-1(5.04E-2)	1.01E+0(1.30E-1)+	1.32E+0(3.04E+0)	2.91E+0(3.33E-1)-	9.52E-1(2.07E+0)		2 50	0 2.23E-1(1.40E-2)-	7.85E-2(2.82E-2)	3.02E-1(1.06E-2)-	9.39E-2(1.92E-2)	1.93E-1(1.49E-2)-	5.94E-2(2.57E-2)	2.45E-1(8.09E-3)-	8.90E-2(3.59E-2)
		1000	1.23E+1(9.30E-1)-	2.38E+0(7.12E+0)	4.72E+0(9.96E-1)-	1.66E-1(7.59E-2)	1.15E+1(8.47E-1)-	1.11E+0(4.60E+0)	1.30E+1(1.27E+0)-	1.97E+0(5.77E+0)	WEG3	100	0 2.98E-1(1.14E-2)-	9.77E-2(3.82E-2)	3.21E-1(1.14E-2)-	1.02E-1(2.34E-2)	2.53E-1(9.45E-3)-	8.37E-2(3.00E-2)	3.29E-1(8.24E-3)-	1.01E-1(3.04E-2)
		200	1.37E+3(6.19E+1)-	9.00E-3(3.08E-3)	1.63E+3(8.88E+2)-	4.72E-3(1.34E-3)	1.36E+3(8.62E+1)-	6.49E-3(2.15E-3)	3.20E+3(4.39E+2)-	4.10E-3(3.00E-5)	1105	3 50	0 5.30E-1(2.19E-2)- 0 5.11E-1(2.14E-2)-	9.11E-2(1.78E-2) 9.50E-2(1.20E-2)	5.13E-1(2.17E-2)-	2.80E-1(4.11E-2) 2.63E-1(3.86E-2)	A75E-1(1.64E-2)-	1.25E-1(5.75E-2) 1.30E-1(6.00E-2)	7.45E-1(2.43E-2)-	2.20E-1(2.90E-2) 2.10E-1(2.57E-2)
	2	500	5.47E+3(1.52E+2)-	6.50E-3(4.89E-3)	5.42E+3(2.11E+3)-	1.27E-2(2.12E-2)	5.25E+3(1.94E+2)-	7.40E-3(2.40E-3)	9.75E+3(4.65E+2)-	4.11E-3(3.18E-5)		100	0 6 28E-1(2 11E-2)-	9.41E-2(1.52E-2)	5.24E-1(2.26E-2)-	2 59E-1(4 00E-2)	6.05E-1(1.72E-2)-	1.55E-1(7.33E-2)	7.64E-1(2.13E-2)-	2 18E-1(3 34E-2)
	-	1000	1.70E+4(4.98E+2) =	8 00E-3(4 10E-3)	1 21E+4(2 85E+3)-	7.66E-3(1.17E-2)	1 58E+4(4 67E+2)-	9.47E-3(5.58E-3)	2 33E+4(8 40E+2)-	4.12E-3(3.06E-5)	2 <u>11</u>	20	0 4.74E-2(3.01E-3)+	9.36E-2(6.98E-3)	1.64E-1(1.13E-2)-	1.26E-1(1.10E-2)	3.75E-2(2.68E-3)≈	3.74E-2(4.88E-3)	1.30E-1(8.09E-3)-	1.09E-1(7.57E-3)
DTLZ		200	1.70214(4.90212)	7 20E 2(4 10E 3)	1.21244(2.05245)=	7 10E 2(2 61E 3)	1.336244(4.07242)	1 40E 1(4 66E 2)	701E:3(115E:2)	3 03E 1(2 54E 1)		2 50	0 8.46E-2(4.20E-3)-	6.78E-2(7.89E-3)	1.78E-1(9.33E-3)-	1.28E-1(8.48E-3)	6.41E-2(4.47E-3)-	5.02E-2(6.85E-3)	1.72E-1(5.35E-3)-	1.18E-1(7.31E-3)
DILL	· .	200	1.0027-4(5.2227-2)	7.20E=2(4.10E=3)	2.5(E, 2(1.09E, 2))	1.00E-1(4.00E-2)	5.95E, 2(2.02E, 2)	1.49E-1(4.00E-2)	2.04E+4(1.22E+2)	2.05E-1(2.04E-1)		100	00 1.33E-1(4.98E-3)-	7.76E-2(4.28E-3)	1.84E-1(5.61E-3)-	1.23E-1(8.94E-3)	1.01E-1(4.73E-3)-	6.04E-2(7.99E-3)	2.02E-1(3.48E-3)-	1.20E-1(7.42E-3)
	3	500	1.03E+4(5.77E+2)-	7.25E-2(5.50E-3)	3.56E+3(1.98E+3)-	1.02E-1(6.89E-2)	5.85E+3(2.92E+2)-	1.63E-1(3.97E-2)	2.04E+4(1.23E+3)-	2.05E-1(2.01E-1)	WFG4	20	0 2.99E-1(1.12E-2)-	2.57E-1(1.12E-2)	4.08E-1(7.67E-3)-	3.75E-1(1.38E-2)	3.15E-1(1.64E-2)-	2.94E-1(1.37E-2)	3.72E-1(1.45E-2)-	2.77E-1(9.24E-3)
		1000	4.05E+4(2.10E+3)-	7.30E-2(8.65E-3)	8.32E+3(4.65E+3)-	1.65E-1(1.43E-1)	1.95E+4(6.81E+2)-	1.93E-1(5.30E-2)	4.11E+4(3.82E+3)-	3.10E-1(2.11E-1)		3 50	0 3.45E-1(1.23E-2)-	2.65E-1(1.66E-2)	4.13E-1(8.91E-3)-	3.75E-1(1.12E-2)	3.56E-1(1.03E-2)-	2.86E-1(1.62E-2)	4.15E-1(1.16E-2)-	2.79E-1(8.67E-3)
		200	9.20E-2(2.22E-1)-	6.50E-3(4.89E-3)	3.53E-1(1.69E-1)+	7.42E-1(1.04E-3)	1.23E-1(2.68E-1)-	5.91E-3(2.19E-4)	5.24E-1(3.42E-1)-	1.18E-1(2.69E-1)	-	100	00 3.87E-1(9.76E-3)-	2.61E-1(1.43E-2)	4.12E-1(1.09E-2)-	3.68E-1(1.19E-2)	4.11E-1(1.06E-2)-	2.82E-1(1.55E-2)	4.29E-1(8.97E-3)-	2.82E-1(1.14E-2)
	2	500	8.66E-1(1.51E-1)-	8.50E-3(3.66E-3)	7.46E-1(1.98E-1)-	7.43E-1(1.86E-3)	6.36E-1(1.41E-1)-	5.82E-3(2.20E-4)	4.78E-1(2.36E-1)≈	4.48E-1(3.69E-1)		20	0 7.70E-2(1.79E-3)-	7.22E-2(1.62E-2)	6.94E-2(1.92E-3)+	7.14E-2(2.30E-3)	6.88E-2(1.05E-3)≈	7.04E-2(4.47E-3)	8.85E-2(5.07E-3)-	7.46E-2(4.52E-3)
		1000	1.03E+1(8.23E-1) =	8.50E-3(3.66E-3)	1.81E+0(3.87E-1)-	7.42E-1(1.14E-6)	9.68E+0(8.22E-1)-	5.86E-3(1.78E-4)	3.88E+0(1.94E+0)-	5.95E-1(3.01E-1)		2 50	0 1.44E-1(6.26E-3)-	7.08E-2(1.04E-2)	6.86E-2(2.73E-3)+	7.01E-2(3.92E-3)	1.11E-1(4.53E-3)-	7.34E-2(9.79E-3)	1.11E-1(7.17E-3)-	7.58E-2(6.15E-3)
DTLZ	1	200	2.66E-1(2.13E-1)+	149E+0(180E+0)	7 37E-1(1 73E-1)+	9.27E-1(9.03E-2)	2.74E-1(2.93E-1)~	5 14E-1(5 73E-1)	4 93E-1(1 04E-1)+	9 80E-1(6 71E-1)	WEG5	- 10	0 2.23E-1(9.35E-3)-	2.77E-1(1.15E-2)	0.78E-2(2.03E-3)+	7.14E-2(2.55E-5) 2.13E-1(2.65E-3)	1.88E-1(0.98E-3)-	7.06E-2(3.37E-3) 3.21E-1(2.61E-2)	1.28E-1(8.8/E-3)-	7.30E-2(3.22E-3) 2.87E-1(2.34E-2)
		500	2.002-1(2.152-1)+	2.66E+0(2.82E+0)	1.222.0(1.182.1)	0.11E 1(1.18E 1)	1.27E 0(2.52E 1)	2.54E+0(4.25E+0)	5 42E . 0(6 PPE 1)	2.15E+0(2.70E+0)		3 50	0 4 16E 1(1 34E 2)	2 82E-1(2 81E-2)	3.23E.1(7.22E.3)	3 14E-1(4 05E-3)	4 57E-1(1 78E-2)-	3.27E-1(1.03E-2)	3.01E-1(2.85E-2)-	2.07E-1(2.34E-2)
	3	500	2.95E+0(8.11E-1)≈	3.00E+0(3.83E+0)	1.22E+0(1.18E-1)-	9.11E-1(1.18E-1)	1.57E+0(2.55E-1)+	5.54E+0(4.55E+0)	5.45E+0(0.88E-1)-	5.15E+0(2.70E+0)		100	00 5.04E-1(1.08E-2)-	2 81E-1(1 70E-2)	3.18E-1(5.80E-3)-	3 13E-1(3 38E-3)	5.46E-1(1.27E-2)-	3.40E-1(3.48E-2)	3.98E-1(4.06E-2)-	2.95E-1(2.10E-2)
		1000	1.40E+1(1.69E+0)-	7.69E+0(1.01E+1)	2.69E+0(3.35E-1)-	9.46E-1(3.32E-2)	1.38E+1(1.57E+0)-	1.01E+1(1.20E+1)	1.77E+1(5.67E+0)-	6.57E+0(9.05E+0)	-	20	0 5.33E-2(2.34E-3)-	2.54E-2(4.05E-3)	3.48E-2(4.52E-2)-	1.36E-2(1.22E-4)	3.83E-2(2.20E-3)-	2.73E-2(4.07E-3)	6.21E-2(4.27E-3)-	2.34E-2(3.13E-3)
		200	2.00E-2(3.56E-8)-	1.00E-2(1.78E-8)	6.69E-2(9.39E-3)-	2.21E-2(5.47E-3)	1.19E-2(1.01E-3)-	6.79E-3(7.03E-4)	1.24E-2(8.01E-4)-	7.35E-3(1.16E-3)		2 50	0 1.36E-1(8.13E-3)-	2.48E-2(3.33E-3)	4.01E-2(7.48E-2)-	1.50E-2(3.50E-4)	8.76E-2(3.76E-3)-	2.46E-2(2.81E-3)	1.96E-1(1.49E-2)-	2.50E-2(5.31E-3)
	2	500	6.39E-1(6.48E-2)-	1.00E-2(1.78E-8)	8.35E-1(1.43E-1)-	3.99E-2(2.13E-2)	5.14E-1(5.55E-2)-	5.95E-3(2.27E-4)	2.06E-1(1.99E-2)-	6.91E-3(9.19E-4)		100	00 2.51E-1(8.08E-3)-	2.52E-2(2.56E-3)	1.44E-2(5.03E-4)≈	1.40E-2(2.34E-4)	1.84E-1(8.10E-3)-	2.49E-2(3.31E-3)	3.31E-1(1.41E-2)-	2.42E-2(3.35E-3)
		1000	8.79E+0(7.51E-1)-	8.50E-3(3.66E-3)	2.93E+0(4.33E-1)-	7.74E-2(4.41E-2)	8.21E+0(5.87E-1)-	5.85E-3(2.81E-4)	3.88E+0(3.03E-1)-	6.23E-3(4.38E-4)	WFG6	20	0 3.26E-1(1.05E-2)≈	3.29E-1(2.14E-2)	3.27E-1(4.91E-3)+	3.51E-1(4.06E-2)	3.40E-1(1.83E-2)≈	3.53E-1(2.24E-2)	5.05E-1(2.51E-2)-	2.70E-1(5.14E-2)
DTLZ	5	200	8 50E-2(1.00E-2)-	1.00E-2(1.78E-8)	3 94E-1(8 95E-2)-	2 89F-2(8 76F-3)	$4.01E_{-2}(4.51E_{-3}) =$	1 98F-2(4 66F-3)	2.82E-1(4.33E-2)-	178F-2(3.09F-3)		3 50	0 4.43E-1(8.59E-3)-	3.39E-1(2.33E-2)	3.30E-1(5.71E-3)≈	3.37E-1(1.18E-2)	4.39E-1(1.40E-2)-	3.61E-1(3.06E-2)	7.06E-1(2.06E-2)-	2.65E-1(5.35E-2)
	3	500	2 82E 0(2 15E 1)	100E 2(178E 8)	207E:0(4 64E 1)	4.62E 2(3.42E 2)	1 13E 0(1 27E 1)	2 03E 2(5 14E 3)	7.06E+0(1.04E+0)	1.63E 2(3.48E 3)		100	00 5.81E-1(1.60E-2)-	3.37E-1(2.58E-2)	3.27E-1(7.97E-3)+	3.44E-1(1.62E-2)	6.00E-1(1.50E-2)-	3.68E-1(3.05E-2)	7.71E-1(2,26E-2)-	2.41E-1(2.62E-2)
	3	1000	1.40E+1(5.82E-1)	0.50E 2(2.24E 2)	4.22E+0(4.04E+1)=	4.02E=2(3.42E=2) 4.11E 2(1.41E 2)	1.15E+0(1.27E+1)=	1.04E 2(4.42E 2)	2.25E+1(2.21E+0)	1.52E 2(2.64E 2)		20	0 3.80E-2(3.13E-3)+	7.62E-2(2.31E-2)	1.59E-1(1.53E-2)-	7.61E-2(3.04E-2)	2.15E-2(9.04E-4)+	3.10E-2(2.70E-3)	5.78E-2(4.08E-3)-	5.01E-2(6.13E-3)
		1000	1.40E+1(5.85E-1)-	9.50E-5(2.24E-5)	4.22E+0(7.25E-1)-	4.11E-2(1.41E-2)	1.20E+1(9.20E-1)-	1.90E-2(4.42E-3)	2.55E+1(2.21E+0)-	1.55E-2(5.04E-5)		2 50	0 1.32E-1(1.04E-2)-	0.93E-2(1.29E-2)	2.4/E-1(1.18E-2)-	7.76E-2(2.07E-2) 8.10E-2(3.24E-2)	1.33E-2(8.23E-3)-	4.76E-2(1.01E-2)	1.0/E-1(8.00E-3)-	6./0E-2(1.21E-2)
		200	5.38E+1(3.91E+0)-	1.00E-2(1.78E-8)	2.33E+0(1.93E+0)-	3.9/E-3(7.26E-8)	5.43E+1(4.09E+0)-	5.78E-3(4.65E-4)	4.72E+1(5.26E+0)-	4.12E-3(3.38E-5)	WFG7	20	0 4 08E-1(1.54E-2)-	A 73E-1(8 (07E-2)	4.81E-1(9.59E-5)-	A 22E-1(2.45E-2)	1.79E-1(2.01E-2)-	3.66E-1(4.31E-2)	4.22E-1(1.48E-3)-	3.31E-1(4.67E-2)
	2	500	2.58E+2(9.40E+0)-	1.00E-2(1.78E-8)	7.73E+1(8.44E+0)-	3.97E-3(1.15E-7)	2.55E+2(6.52E+0)-	6.33E-3(9.98E-4)	2.05E+2(9.04E+0)-	4.13E-3(3.99E-5)	2.2023	3 50	0 581E-1(183E-2)-	4 29E-1(8 30E-2)	4.92E-1(1.18E-2)-	4 25E-1(2 72E-2)	5.75E-1(2.32E-2)-	3 90E-1(5 49E-2)	5 37E-1(1 45E-2)-	3.62E-1(5.43E-2)
		1000	6.43E+2(1.06E+1)-	1.00E-2(1.78E-8)	2.83E+2(1.28E+1)-	3.97E-3(3.58E-7)	6.13E+2(6.78E+0)-	7.22E-3(1.66E-3)	4.73E+2(1.62E+1)-	4.12E-3(2.87E-5)		100	00 6.47E-1(1.19E-2)-	4.45E-1(6.38E-2)	5.00E-1(8.60E-3)-	4.33E-1(1.67E-2)	6.58E-1(1.63E-2)-	4.00E-1(6.86E-2)	5.75E-1(1.48E-2)-	3.66E-1(5.43E-2)
DTLZ	5 —	200	9.67E+1(3.23E+0)-	1.00E-2(1.78E-8)	5.71E+0(4.28E+0)-	1.22E-2(5.67E-5)	8.52E+1(4.03E+0)-	2.48E-2(1.00E-2)	1.05E+2(5.87E+0)-	3.99E-3(4.93E-5)		20	0 1.13E-1(7.11E-3)+	1.70E-1(5.66E-2)	2.40E-1(1.52E-2)-	1.47E-1(9.62E-2)	1.00E-1(7.13E-3)+	1.41E-1(1.30E-2)	1.60E-1(6.43E-3)-	1.01E-1(5.18E-2)
	3	500	3.52E+2(3.64E+0) =	1.00E-2(1.78E-8)	1.09E+2(1.69E+1) =	1.22E-2(5.87E-5)	3.45E+2(3.57E+0) -	2 39E-2(7 70E-3)	2.82E+2(1.28E+1) =	4.09E-2(1.65E-1)		2 50	0 1.65E-1(4.72E-3)≈	1.70E-1(1.43E-2)	2.18E-1(2.05E-2)-	1.23E-1(5.55E-2)	1.46E-1(5.83E-3)+	1.68E-1(1.16E-2)	2.34E-1(5.20E-3)-	6.11E-2(2.28E-2)
		1000	7.02E+2(5.25E+0)	1.00E 2(1.78E 8)	3.46E+2(2.57E+1)	1.21E.2(1.53E.4)	7.08E+2(5.38E+0)	3 60E 2(107E 2)	5.85E+2(2.82E+1)	2.86E 2(1.00E 1)		100	00 2.21E-1(5.62E-3)-	1.47E-1(5.18E-2)	2.17E-1(2.03E-2)-	1.04E-1(7.46E-2)	1.92E-1(6.31E-3)-	1.78E-1(1.28E-2)	2.91E-1(6.38E-3)-	7.43E-2(3.68E-2)
		200	7.926+2(5.256+0)=	1.00E=2(1.76E=0)	3.40E+2(2.57E+1)=	1.21E*2(1.33E**)	7.982+2(5.582+0)=	1.50E-2(1.97E-2)	5.65E+2(2.62E+1)=	4.215 1(0.205.2)	WFG8	20	0 3.43E-1(1.27E-2)+	4.82E-1(4.82E-2)	5.11E-1(1.80E-2)≈	5.08E-1(1.14E-1)	3.66E-1(1.63E-2)+	4.07E-1(2.44E-2)	4.69E-1(1.67E-2)+	4.98E-1(2.56E-2)
		200	5.65E-2(1.60E-2)+	4.40E-1(1.14E-6)	2.71E+0(4.19E-1)-	4.56E-1(8.07E-3)	2.12E-2(4.81E-3)+	4.53E-2(1.36E-1)	1.65E-2(1.94E-3)+	4.21E-1(9.79E-2)		3 50	0 3.93E-1(1.20E-2)+	4.27E-1(3.79E-2)	4.98E-1(1.86E-2)≈	4.75E-1(8.48E-2)	4.26E-1(1.49E-2)+	4.56E-1(3.44E-2)	5.55E-1(1.22E-2)-	5.16E-1(2.63E-2)
	2	500	1.12E+0(1.05E-1)-	4.41E-1(2.24E-3)	4.70E+0(2.64E-1)-	4.56E-1(1.33E-2)	9.15E-1(7.09E-2)-	2.28E-2(9.89E-2)	3.54E-1(7.46E-2)-	1.33E-1(2.08E-1)		100	00 4.59E-1(9.96E-3)≈	4.80E-1(5.09E-2)	4.87E-1(2.15E-2)≈	4.82E-1(8.67E-2)	5.08E-1(1.51E-2)-	4.72E-1(4.90E-2)	5.86E-1(1.32E-2)-	5.15E-1(2.21E-2)
		1000	2.42E+0(1.13E-1)-	4.43E-1(1.13E-2)	5.83E+0(1.36E-1)-	4.58E-1(1.99E-2)	2.44E+0(1.32E-1)-	4.51E-2(1.36E-1)	1.31E+0(1.33E-1)-	1.11E-1(1.97E-1)		20	0 8.14E-2(6.48E-3)-	2.04E-2(4.58E-3)	3.54E-2(3.15E-2)-	2.01E-2(1.6/E-3)	3.71E-2(3.79E-3)-	2.38E-2(4.19E-3)	7.34E-2(4.65E-3)-	2.16E-2(4.21E-3)
DTLZ	/	200	5.30E-1(5.74E-2)+	7.78E-1(1.01E-1)	4.78E+0(4.88E-1)-	8.61E-1(2.08E-2)	3.07E-1(5.54E-2)+	7.98E-1(2.20E-1)	3.50E-1(6.78E-2)+	8.03E-1(1.03E-1)		2 50	0 2.02E-1(1.17E-2)-	1.92E-2(3.53E-3)	4.81E-2(3.14E-2)-	2.4/E-2(3.39E-3) 2.27E 2(1.45E 3)	1.08E-1(8.98E-3)-	2.10E-2(3.12E-3) 2.10E-2(2.24E-3)	1.58E-1(8.09E-3)-	1.88E-2(4.63E-3)
	3	500	1.72E+0(1.67E-1)-	1.03E+0(3.22E-1)	7.98E+0(2.53E-1)-	8.76E-1(3.18E-2)	2.03E+0(2.18E-1)-	2.07E-2(9.26E-2)	1.55E+0(1.68E-1)-	2.91E-1(4.07E-1)	WFG9	20	0 4.74E-1(5.20E-2)-	3.58E-1(7.84E-2)	3.10E-1(1.88E-2)=	3.46E-1(3.06E-3)	3.98E-1(2.15E-2)-	3.49E-1(4.09E-2)	4.09E-1(1.25E-2)-	2.56E-1(2.20E-2)
	1.	1000	3 10E+0(2 39E-1)-	1.23E+0(3.24E-1)	9.40E+0(3.01E-1) =	8 65E-1(2 96E-2)	4 23E+0(1 68E-1)-	471E-2(133E-1)	4.14E+0(3.14E-1) =	1 23E-1(3 01E-1)		3 50	0 7.01E-1(2.21E-2)-	3.48E-1(8.15E-2)	3.31E-1(3.63E-2)≈	3.32E-1(2.32E-2)	5.58E-1(2.37E-2)-	3.55E-1(5.32E-2)	5.62E-1(2.37E-2)-	2.43E-1(2.05E-2)
		1000	5.10170(2.391-1)-	1.2.51.+0(5.241-1)		0.0012-1(2.9012-2)	4.251210(1.0812-1)-	4.7 IL-2(1.55E-1)	4.14670(3.146-1)-	1.2012-1(0.01E-1)		100	00 8.30E-1(2.84E-2)-	2.96E-1(2.99E-2)	3.32E-1(3.93E-2)~	3.45E-1(2.56E-2)	7.17E-1(2.31E-2)-	3.65E-1(3.37E-2)	6.29E-1(3.48E-2)-	2.40E-1(2.35E-2)
	+/-/	~	3/39/0		2/40/0		4/37/1		3/38/1			-1~	10/30/5		\$/36/10		11/30/4		5/48/2	
									1		+/	- / -0	+07.559.5		ax 30/10		14/39/4		JT 40/2	

The IGD results obtained by the original MOEAs and their accelerated versions on DTLZ and WFG test suites

- Background
- Test problem for large-scale multiobjective optimization
- Real-world large-scale multiobjective optimization problems
- Solving large-scale many-objective optimization problems
- Accelerating large-scale multiobjective optimization
- Future Challenges

The challenges in large-scale multiobjective optimization:

- More effective and efficient variable analysis methods
- Constraint handling
- From thousands to million or even billion scales
- □ From multiobjective to many-objective
- □ From cheap to expensive
- □ From machine learning to deep learning
- □ From continuous to discrete
- More acceleration strategies
- □ More real-world LSMOPs

. . .

Thank you! (Q&A)