

Towards a Formal Model of Recursive Self-Reflection

Axel Jantsch

TU Wien, Vienna, Austria

SAINT Workshop on Self-Aware and Autonomous Systems Shenzhen, China, May 2019

Self-Awareness

Self-awareness, in this context, is defined by the combination of three properties that IT systems and services should possess:

- 1 Self-reflective: i) aware of their software architecture, execution environment and the hardware infrastructure on
- Recursive use of the term "awareness";

goals in s vare of

- Static, not dynamic;
- The system cannot be aware of its own self-reflection.
 - Self-adaptive: proactively adapting as the environment evolves in order to ensure that their QoS requirements and respective SLAs are continuously satisfied while at the same time operating costs and energy-efficiency are optimized.

Actors in a Dynamic Dataflow Model

$$A = \langle \mathfrak{T}, I, O, z_0, f, g, \nu, \vec{\mathfrak{m}} \rangle$$

 $\mathfrak{T} \subset \mathfrak{S}$... set of states $I \subseteq \mathcal{P}(S)$... input signals $O \subseteq \mathcal{P}(S)$ $z_0 \in \mathfrak{T}$... initial state

 $f: \mathcal{P}(S) \times \mathfrak{S} \to \mathcal{P}(S)$... output encoding

... output signals

 $\nu: \mathbb{N} \to \mathcal{P}(\mathbb{N})$... input partitioning

 $g: \mathcal{P}(S) \times \mathfrak{S} \to \mathfrak{S}$... next state

 $\vec{\mathfrak{m}}:\mathfrak{S}\to \mathtt{Action}$... a meta operator

Example Actor

$$\nu(.) = \{3\}$$

$$\alpha(\langle t_1, t_2, t_3 \rangle) = \begin{cases} \mathfrak{l} & \text{if } (t_1 + t_2 + t_3)/3 < 35.5 \\ \mathfrak{n} & \text{if } 35.5 \le (t_1 + t_2 + t_3)/3 < 37.5 \\ \mathfrak{e} & \text{if } 37.5 \le (t_1 + t_2 + t_3)/3 < 38.5 \\ \mathfrak{h} & \text{if } 38.5 \le (t_1 + t_2 + t_3)/3 \end{cases}$$

Abstraction

- Using symbols for many detailed data
- Reduces amount of information
- Keeps the essence
- Key for self-awareness
- General type of learning

Signal Abstraction

 $s = \langle 36.7, 36.8, 36.7, 36.8, 36.9, 36.9, 37.0, 37.0, 37.1, 37.2, 37.3, 37.2, 37.3, 37.3, 37.4, 37.5, 37.6, 36.6 \rangle$

$$egin{align*} egin{align*} egin{align*}$$

$$\alpha(\langle t_1, t_2, t_3 \rangle) = \begin{cases} \mathfrak{l} & \text{if } (t_1 + t_2 + t_3)/3 < 35.5 \\ \mathfrak{n} & \text{if } 35.5 \le (t_1 + t_2 + t_3)/3 < 37.5 \\ \mathfrak{e} & \text{if } 37.5 \le (t_1 + t_2 + t_3)/3 < 38.5 \\ \mathfrak{h} & \text{if } 38.5 \le (t_1 + t_2 + t_3)/3 \end{cases}$$

Value Abstraction

$$\alpha_{\nu}(\langle x \rangle) = \begin{cases} \mathfrak{A} & \text{if } x = \mathfrak{a} \text{ or } x = \mathfrak{b} \\ x & \text{otherwise} \end{cases}$$

Time Abstraction

$$\alpha_t(\langle x_1, x_2 \rangle) = \begin{cases} \mathfrak{A} & \text{if } x_1 = \mathfrak{a} \text{ and } x_2 = \mathfrak{a} \\ \langle x_1, x_2 \rangle & \text{otherwise} \end{cases}$$

Actor Abstraction

Actor Abstraction

 A_A is an actor abstraction of A iff $S'_O = S''_O$.

Actor Abstraction

Self Mdoel

Self Model

 \bar{A}_A is a **simulatable actor** of A:

- Ā_A is an actor abstraction of A.
- It has an additional input signal denoted as control signal.
 - It can be stopped and resumed through the control signal.
- Input signals are duplicated and controlled by the control input.
- It has an additional output signal: status signal.

Self Assessment

 $J_{A''}$ assesses the behavior and performance of actor A'':

- J_{A''} monitors abstractions of inputs and outputs of A''.
- It compares the observed behavior with expected behavior.
- It reports observed differences in Δ_J .
- It maintains an assessment history.

Adaptive Self-Model

A **learning actor** A^L modifies its behavior to minimize an error signal.

- D_1 analyses the differences between S'_l abd S''_l .
- D_2 analyses the differences between S'_O and S''_O .
- D₁ is used to improve the environment model.
- D₂ is used to improve the actor model and the signal abstractions.

Not Quite Self-Aware

- A_{ASM} uses abstraction, simulation, learning, and a self-model.
- Self-awareness is a process that should be, dynamically and flexibly, applicable to a range of actors, including itself.

- A^L_{SAF} tracks behavior and expectations.
- It can trigger an in-depth investigation of an actor.

 A_{SAF}^{L} targets A^{L}

Self-Awareness Target: A^L

 A_{SAF}^{L} targets $J_{A^{L}}$

Self-Awareness Target: J_{A^L}

 A_{SAF}^{L} targets A_{SAF}^{L}

Self-Awareness Target: A_{SAF}^{L}

Summary

- Self-awareness is a machinery to study any of the system's actors;
- It uses abstraction, simulation, assessment, and other techniques;
- It can improve behavior and performance.

Conclusion

Issues:

- Automatic, efficient abstraction techniques
- Assessment techniques
- Goal management
- Learning
- Simulation

Promise:

- Any actor can be abstracted any number of times → no situation is too complex to analyze;
- Any actor can be subject to the scrutiny of self-awareness;
- General machinery applicable to a wide range of application domains;
- Due to continuous learning it is as efficient and effective as a custom design.

References I

Nikil Dutt, Amir M. Rahmani, and Axel Jantsch. "Empowering Autonomy through Self-awareness in MPSoCs". In: **Proceedings of the IEEE NEWCAS Conference**. Strasbourg. France, June 2017.

Maximilian Götzinger et al. "Model-free Condition Monitoring with Confidence". In: International Journal of Computer Integrated Manufacturing (2019).

Axel Jantsch. "Towards a Formal Model of Recursive Self-Reflection". In: International Workshop on Autonomous Systems Design (ASD). Mar. 2019, 6:1–6:16.

Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. "Self-Awareness in Systems on Chip – A Survey". In: **IEEE Design Test** 34.6 (Dec. 2017), pp. 1–19.

Samuel Kounev et al. "Model-driven Algorithms and Architectures for Self-Aware Computing Systems (Dagstuhl Seminar 15041)". In: **Dagstuhl Reports** 5.1 (2015). Ed. by Samuel Kounev et al., pp. 164–196.

